Serge Durand

Serge Durand

PhD student in Trustworthy AI

CEA List LSL

INRIA Antique (ENS Paris)

About me

I am finishing a PhD on trustworthy AI with a defense in December 2025. I researched the use of over-approximations to help train, verify, and explain neural networks. I am broadly interested in making deep learning models more trustworthy.

On my free time I enjoy cooking (and eating), coffee (I tend to use freshly ground light/medium roast beans brewed with Aeropress), climbing (almost exclusively indoor bouldering), rugby (watching).

Interests

  • Artificial Intelligence
  • Neural Networks Robustness & Verification
  • Explainable AI

Education

  • Doctorat en Informatique (PhD), 2025

    ENS Paris - Saclay / CEA List

  • Master Parisien de recherche en Informatique - M2, 2021

    ENS Paris - Saclay / Paris 7 Diderot - now Université de Paris

  • Master Parisien de recherche en Informatique - M1, 2020

    ENS Paris - Saclay / Paris 7 Diderot - now Université de Paris

  • Licence de Mathématiques, mineure informatique, 2019

    Université Pierre et Marie Curie (UPMC) - now Sorbonne Université

Experience

 
 
 
 
 

PhD Student

CEA List, Laboratoire de Sécurité et Sûreté du Logiciel (LSL)

Nov 2021 – Dec 2025 Paris
Over-Approximating Neural Network for Verification, Robustness, and Explainability. PhD directed by François Terrier, co-supervised by Zakaria Chihani and Caterina Urban.
 
 
 
 
 

Intern

CEA List, Laboratoire de Sécurité et Sûreté du Logiciel (LSL)

Mar 2021 – Sep 2021 Paris
Neural Network Verification with PyRAT
 
 
 
 
 

Intern

Antique (INRIA / ENS Ulm lab)

Jun 2020 – Aug 2020 Paris
Verification of ACAS Xu networks using abstract interpretation

Recent Publications

Over-Approximating Neural Networks for Verification, Robustness and Explainability

We show in this thesis several applications of over-approximations of neural networks to improve trust in AI systems in three areas: verifications, robust training and (formal) explainability.

On Using Certified Training towards Empirical Robustness

Combining certified and adversarial losses can help empirical robustness to local perturbations.

ReCIPH: Relational Coefficients for Input Partitioning Heuristic

An input partitioning heuristic for efficient neural network verification of low-dimensional input models.