

Over-Approximating Neural Networks for
Verification, Robustness, and Explainability

Sur-approximation de réseaux de neurones : applications à la
vérification, la robustesse et les explications de réseaux de neurones

Thèse de doctorat de l'université Paris-Saclay

Ecole doctorale n°580, Sciences et Technologies de l’Information et de la
Communication.

Spécialité de doctorat :informatique
Graduate School : Informatique et sciences du numérique.

 Référent : ENS Paris-Saclay

Thèse préparée dans l’Institut LIST (Université Paris-Saclay, CEA) et l’INRIA Paris
, sous la direction de François TERRIER, directeur de recherche, du co-encadrement de

Zakaria CHIHANI, ingénieur - chercheur et du co-encadrement de Caterina UBRAN,
chargée de recherche, INRIA - Paris / Ecole Normale Supérieure Paris / PSL

Thèse soutenue à Paris-Saclay, le 19 décembre 2025, par

 Serge DURAND

Composition du Jury
Membres du jury avec voix délibérative

Pierre-Loïc GAROCHE
Professeur, Ecole Nationale de l’Aviation Civile Rapporteur & Examinateur

Mathieu SERRURIER
Professeur,
Institut de Recherche en Informatique de Toulouse

 Rapporteur & Examinateur

Ileana OBER
Professeure,
Institut de Recherche en Informatique de Toulouse

 Examinatrice

Claire PAGETTI
Directrice de Recherche, ONERA Examinatrice

Huan ZHANG
Assistant Professor,
University of Illinois Urbana-Champaign

 Examinateur

Title : Over-Approximating Neural Networks for Verification, Robustness, and Explainability

Keywords : Neural Networks, Verification, Robustness, Explainability, Certified Training

Abstract : The success of deep learning since the
early 2010s has led to its adoption in a wide range
of applications, from image classification to natural
language processing. However, deploying AI models
— especially in safety-critical applications —
requires strong behavioral guarantees as well as
means to understand and explain their predictions.
Robustness — the ability of a model to maintain
performance under small input changes — is an
important safety requirement and helps in formally
explaining model predictions.

Over-approximation techniques, introduced by the
machine learning and formal methods communities,
have emerged as a key tool to verify neural
networks and to train them with provable
robustness goals. By bounding the range of possible
network outputs, they make it possible to prove
desirable properties for all possible inputs within a
specified input domain. In this thesis we investigate
how over-approximations can be effectively
exploited to further improve the verification,
training, and formal explainability of neural
networks.

Such over-approximations are essential to make the
analysis tractable for neural networks of moderate
scale, but they also tend to be imprecise, in
particular for networks trained with no robustness
goals. In a first contribution we leverage key
information from over-approximations to efficiently
tighten bounds when verifying trained networks
with low-dimensional input spaces. This technique is
implemented in PyRAT, a neural network verification
tool, and contributed to its success in several
benchmarks of the latest edition of the International
Verification of Neural Networks Competition
(VNN-COMP 2024).

A second contribution shows that certified training
- using over-approximations to minimize a sound
bound on the worst-case loss - can be mixed with
adversarial training - computing the loss over
perturbed training samples - to improve empirical
robustness and prevent catastrophic overfitting, a
failure mode of single-step adversarial training,
under specific experimental settings.

Finally, we propose to use over-approximations to
train for formal explainability. To avoid the trivial
case where robustness voids all explanations, we
introduce Feature Subset Certified Training, a new
scheme that enforces robustness only over
selected subsets of input features, a first step
towards better trade-offs between accuracy and
conciseness of the explanations.

Together, these contributions illustrate how
over-approximations can be leveraged towards
better robustness and explainability, supporting
the development of safer and more trustworthy AI
systems.

Titre : Sur-approximation de réseaux de neurones : applications à la vérification, la robustesse et les
explications de réseaux de neurones.

Mots clés : Réseaux de Neurones, Vérification, Robustesse, Explicabilité, Entraînement Robuste

Résumé : Depuis le début des années 2010, le
succès de l’apprentissage profond a conduit à son
adoption dans un large éventail d’applications, allant
de la classification d’images au traitement du
langage naturel. Cependant, le déploiement de
modèles d’IA — en particulier dans des systèmes
critiques — nécessite à la fois de fortes garanties et
des moyens de comprendre et d’expliquer leurs
prédictions. La robustesse — la capacité d’un
modèle à maintenir ses performances face à de
petites perturbations de ses entrées — constitue un
prérequis important en matière de sécurité et
contribue à l'explicabilité formelle des prédictions du
modèle.

Les techniques de sur-approximation, introduites
par les communautés de l’apprentissage
automatique et des méthodes formelles, se sont
imposées comme un outil clé pour vérifier les
réseaux de neurones et les entraîner avec des
objectifs de robustesse prouvable. En bornant
l’ensemble des sorties possibles d’un réseau, elles
permettent de prouver certaines propriétés
souhaitées pour toutes les entrées appartenant à un
domaine donné. Dans cette thèse, nous étudions
dans quelle mesure ces sur-approximations peuvent
être utilisées de manière efficace pour améliorer la
vérification, l’apprentissage et l’explicabilité formelle
des réseaux de neurones.

De telles sur-approximations sont essentielles pour
rendre possible l’analyse de réseaux de neurones de
taille réaliste, mais elles ont également tendance à
être imprécises, en particulier pour des réseaux
entraînés sans objectif explicite de robustesse. Dans
une première contribution, nous exploitons des
informations clés issues des sur-approximations
pour affiner efficacement les bornes lors de la
vérification de réseaux avec des espaces d’entrée
de faible dimension. Cette technique est
implémentée dans PyRAT, un outil de vérification de
réseaux de neurones, et a contribué à ses bons
résultats dans la dernière édition de la compétition
internationale de vérification de réseaux de
neurones (VNN-COMP 2024).

Une seconde contribution montre que
l'entraînement certifié — qui utilise des
sur-approximations pour minimiser une borne de
la fonction de coût dans le pire cas — peut être
combiné à l'entraînement adversarial — qui
calcule la fonction de coût sur des échantillons
d’entraînement perturbés — afin d’améliorer la
robustesse empirique et de prévenir le
catastrophic overfitting, un mode d’échec de
l’entraînement adversarial, dans certains
contextes expérimentaux.

Enfin, nous proposons d’utiliser les
sur-approximations pour entraîner des modèles en
vue d’une explicabilité formelle. Afin d’éviter le cas
trivial où la robustesse rend toute explication vide,
nous introduisons le Feature Subset Certified
Training, un nouveau mode d'entraînement qui
impose la robustesse uniquement sur certains
sous-ensembles des features des échantillons, un
premier pas vers de meilleurs compromis entre
précision et concision des explications formelles.

Dans l’ensemble, ces contributions illustrent
comment les sur-approximations peuvent être
mises à profit pour améliorer la robustesse et
l’explicabilité, soutenant ainsi le développement
de systèmes d’IA plus sûrs et plus dignes de
confiance.

3

Contents

Contents iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Over-Approximations and Trustworthy AI . 1

1.1.1 Verification of Software Systems . 1
1.1.2 Over-Approximations of Neural Networks . 2
1.1.3 Robustness of Neural Networks . 4

1.2 Tightening Bounds for Verification . 4
1.3 Over-approximations beyond verified robustness . 5

1.3.1 Empirical Robustness . 5
1.3.2 Explainability of Neural Networks . 6

Background and Context 11

2 Background 13
2.1 Supervised Classification and Neural Networks . 13

2.1.1 Neural Networks . 13
2.1.2 Neural Network Training . 14

2.2 Robustness of Neural Networks . 15
2.2.1 Adversarial Training . 15
2.2.2 Single Step Adversarial Training and Catastrophic Overfitting 16
2.2.3 Certified Training and Verified Robustness . 17
2.2.4 A first approximation: Interval Bound Propagation 18

2.3 Hybrid Methods: state of the art in certified training . 19
2.3.1 SABR: Small Adversarial Bounding Regions . 19
2.3.2 Expressive Losses . 20

2.4 Bound Propagation: over-approximating neural networks 22
2.4.1 Neural Networks as computational graphs . 22
2.4.2 Linear Approximations for Neural Network Verification 23
2.4.3 Linear approximations and certified training . 26
2.4.4 Beyond linear approximations . 27

Tightening Bounds for Incomplete Verification 29

3 An input partitioning heuristic for the verification of neural networks 31
3.1 Context and Motivation . 31

3.1.1 Input Partitioning . 31
3.1.2 Binary Partitioning Trees . 32

3.2 Heuristics for input partitioning . 33
3.2.1 Random choice . 33
3.2.2 Biggest interval first . 33
3.2.3 Gradient Smears . 33

3.3 ReCIPH: Relational Coefficient for an Input Partitioning Heuristic 34
3.3.1 Formalism . 34

3.3.2 ReCIPH score . 34
3.4 Experimental results . 35

3.4.1 PyRAT on ACAS benchmark . 35
3.4.2 Overhead of Gradient Smear and ReCIPH . 36
3.4.3 PyRAT on Mooring lines monitoring neural network 37
3.4.4 Libra on a fairness benchmark . 38
3.4.5 VNN-COMP Results . 39

3.5 Related Work . 40
3.6 Conclusion . 42

Applications of Certified Training 43

4 Certified Training for Empirical Robustness 45
4.1 Motivation and methodology . 45

4.1.1 Motivating Example . 45
4.1.2 Expressive Losses . 46
4.1.3 ForwAbs . 49

4.2 Experimental Setup . 50
4.2.1 Datasets . 50
4.2.2 Implementation Details . 50
4.2.3 Computational Setup . 50
4.2.4 Network Architectures . 50

4.3 Preventing Catastrophic Overfitting . 51
4.3.1 FGSM . 51
4.3.2 N-FGSM . 53
4.3.3 ELLE . 54

4.4 Bridging the Gap to Multi-Step Adversarial Training . 57
4.4.1 Cyclic training schedule . 58
4.4.2 Long training schedule . 59
4.4.3 Effect of Model Architecture on Method Performance 60

4.5 Hyperparameters and scheduling . 60
4.6 Sensitivity Analysis and Performance Trade-Offs . 61

4.6.1 Sensitivity Analysis . 61
4.6.2 Training Overhead . 62
4.6.3 Clean Accuracies and IBP Losses . 64

4.7 Related work . 69
4.7.1 SingleProp . 69
4.7.2 Empirical Robustness of Certified Training . 69
4.7.3 Catastrophic Overfitting in Certified Training Setups 70
4.7.4 Comparison with our work . 71

4.8 Conclusion . 71

5 Certified Training for Formal Explainability 73
5.1 Formal explainability . 73

5.1.1 Feature attribution methods . 73
5.1.2 Formally robust explanations . 74
5.1.3 Computing formal explanations . 75
5.1.4 Limits of optimal robust explanations . 76
5.1.5 Using incomplete but sound verifiers . 77
5.1.6 Empirically formally explainable models . 78

5.2 Training for Formal Explainability . 78
5.2.1 Feature Subset Certified Training (FSCT) . 78

5.3 Traversal orders . 80
5.3.1 Existing orders . 80

5.3.2 Linear Coefficients as traversal order . 81
5.3.3 Complexity of the different traversal orders . 81

5.4 Experimental results . 82
5.4.1 Dichotomy search for irrelevant features . 82
5.4.2 Traversal orders comparison . 83
5.4.3 Scalable formal explanations on CIFAR-10 . 85
5.4.4 Scalable formal explanations on TinyImageNet . 87

5.5 Related work . 89
5.6 Conclusion and future work . 91

Conclusion 93

6 Conclusion and Perspectives 95

Bibliography 99

List of Figures

1.1 Incidents involving AI systems since 2015. The chart comes from https://airisk.mit.edu/
ai-incident-tracker/timeline-risk-classification, the data fromhttps://incidentdatabase.
ai/. Completing the legend: 5: Human-Computer Interaction, 6: Socioeconomic and Environmen-
tal, 7: AI system safety, failures and limitations. 1

1.2 Over-approximating neural networks outputs for verification and training. Credit: ETH Zurich
SRI Lab. 3

1.3 An adversarial example for an image classifier. A small perturbation (amplified for visualization
purposes) is added to the original image of a panda, leading the network to misclassify it as a
gibbon with high confidence. Figure from Goodfellow et al. [1]. 4

2.1 Illustration of the adversarial attacks discussed in this section. The blue square is the ball 𝐵(𝒙 , 𝜖)
considered as the perturbation space. The initial random perturbation is indicated with a dashed-
line. The gradient steps are indicated with arrows. See Algorithm 2.1 for the pseudocode of
RS-FGSM. FGSM is obtained by removing the random initialization and setting 𝛼 = 𝜖. N-FGSM is
obtained by initializing from a random point in 𝐵(𝒙 , 𝑘𝜖)with 𝑘 > 1 and omitting the projection
step (line 8). PGD is obtained by iterating several times the steps at lines 6-8 with a smaller step
size 𝛼. 17

2.2 Illustration of the wrapping effect of interval arithmetic. The initial space is a product of two
intervals (cyan square). The cyan squares across panels are the exact reachable sets after repeated
45-degree rotations. The orange squares (enclosing boxes) are the over-approximated reachable sets
obtained with interval arithmetic. The gray dashed lines are the exact reachable sets obtained by
applying the rotation on the previous enclosing box. The wrapping effect (the over-approximation
of the box enclosure) leads to a rapid explosion of the approximated reachable set. This is highly
related to the dependency problem, a more general pitfall of interval analysis. Consider a variable
𝑥 taking possible values in an interval [0, 1]. Interval arithmetic gives 𝑥 − 𝑥 ∈ [−1, 1], whereas an
abstraction that tracks variable relations yields the exact result [0, 0]. 19

2.3 SABR: the blue box represent the perturbation space 𝐵(𝒙 , 𝜖) of the input sample 𝒙. The red cross
𝒙adv is an adversarial example, considered as center for a new, smaller box to be used for training,
delimited by the red lines. This box is clipped to the original perturbation space. 20

2.4 A simple neural network with 2 hidden layers, input of dimension 2 and a single output. Following
the notations of Example 2.1.1, the weight matrices are:

{(
−4 −1 − 1 2

)
,
(
4 −2 − 4 −1

)
,
(
3 3

)}
,

the biases are omitted for clarity. The input is represented in green, the hidden layers in blue and
the output in red.We decouple the application of the linear function from the activation function,
deviating from the common graph representation to better illustrate how non-linearities are
handled when approximating the reachable space of a network. The nodes immediately before the
activation functions are called Pre-Activation nodes (or Pre-ReLU in the case of ReLU activations). 22

2.5 Linear approximations of the ReLU function . 25
2.6 Linear approximation of the Sigmoid function . 26
2.7 Optimal convex approximation . 27

3.1 Symbolic interval analysis on a toy network. The analysis on the full input space gives an
approximation of the reachable output space of [0, 22] while analyzing two subspaces by splitting
one input yields a tighter approximation of [2, 20]. 32

3.2 Impact of the choice of the input to split. We indicate the chosen split dimension as a node label
and the new input space of the splitted variable on the edges. Cyan indicate when the subproblem
is solved, orange when it needs to be split further. 33

3.3 The ACAS Xu networks and its inputs. Credit for both figures: [133]. 35

https://airisk.mit.edu/ai-incident-tracker/timeline-risk-classification
https://airisk.mit.edu/ai-incident-tracker/timeline-risk-classification
https://incidentdatabase.ai/
https://incidentdatabase.ai/

3.4 We implemented in PyRAT the logging of the binary partitioning trees (see Section 3.1.2). This is
an example from the ACAS Xu benchmark, property 4 on network 1_1. Top tree is the analysis
using the width heuristic, bottom tree with ReCIPH. 36

3.5 SDP and LP relaxations of a piecewise linear activation. The SDP relaxation of Raghunathan et al.
[2] is delimited in pink, the triangle relaxation in blue. The unstable case is left, the inactive case in
the middle and active case to the right. Notice that the SDP relaxation is not exact even in the fixed
status, motivating the introduction of linear cuts to the SDP. Figure from Batten et al. [3]. 42

4.1 IBP loss of adversarial training schemes on CIFAR-10, setup from Table 4.2. 46
4.2 IBP certified robustness attained by expressive losses on the PreActResNet18 training setup

from Jorge et al. [4]. Validation results on CIFAR-10 under perturbations of 𝜖 = 8/255. Hyperparam-
eters are: 𝛼 = 0.1 for Exp-IBP, 𝛼 = 10−15 for CC-IBP and MTL-IBP, 𝛼 = 10−9 for SABR. They are
chosen to reduce the IBP loss as much as possible on the validation set. N-FGSM is 48

4.3 Sensitivity of the expressive losses on a toy network of varying depth, with 𝛼 = 10−1 for Exp-IBP.
For all three plots, CC-IBP displays almost identical behavior to MTL-IBP. 49

4.4 IBP loss over epochs (top), box plots (10 runs) for the training time of an epoch (bottom), setup
as Figure 4.2. Hyperparameters are: 𝛼 = 0.1 for Exp-IBP, 𝛼 = 10−15 for CC-IBP and MTL-IBP,
𝛼 = 10−9 for SABR, 𝜆̃ = 10−15 for ForwAbs and 𝜆ℓ1 = 0.04 for ℓ1-regularized N-FGSM. They
are chosen to reduce the IBP loss as much as possible on the validation set. For all methods in
this experiment, larger values among those we considered led to numerical problems or trivial
behaviors, such as networks consistently outputting the same class in our implementation. . . . 50

4.5 The use of certified training techniques on top of FGSM can prevent CO for PreActResNet18 on
the CIFAR-10 test set under perturbations of 𝜖 = 8/255 and 𝜖 = 24/255. Hyperparameters are as
follows: on 𝜖 = 8/255, 𝛼 = 3 × 10−2 for Exp-IBP, 𝛼 = 10−8 for MTL-IBP, 𝜆̃ = 10−18 for ForwAbs; on
𝜖 = 24/255, 𝛼 = 2.5 × 10−2 for Exp-IBP, 𝛼 = 10−7 for MTL-IBP, 𝜆̃ = 2 × 10−16 for ForwAbs. Training
schedule We use a short schedule popular in the literature [4–7]. The batch size is set to 128, and
SGD with weight decay of 5 × 10−4 is used for the optimization. Crucially, no gradient clipping is
employed, which (in addition to network depth and the lack of ramping up) we found to be a
major factor behind the instability of pure IBP training (see Section 4.1.2). We train for 30 epochs
with a cyclic learning rate linearly increasing from 0 to 0.2 during the first half of the training then
decreasing back to 0. 52

4.6 SoftPlus activation function, compared to ReLU. 52
4.7 When applied on top of FGSM, certified training techniques can prevent CO beyond ReLU networks.

Results with a modified PreActResNet18 employing SoftPlus activations, for perturbations of
𝜖 = 24/255 on the CIFAR-10 and CIFAR-100 test sets. The hyperparameters are as follows: on
CIFAR-10, 𝛼 = 5 × 10−3 for Exp-IBP, 𝛼 = 2 × 10−11 for MTL-IBP, 𝜆̃ = 10−20 for ForwAbs; on
CIFAR-100, 𝛼 = 1 × 10−2 for Exp-IBP, 𝛼 = 10−10 for MTL-IBP, 𝜆̃ = 10−20 for ForwAbs. The training
schedule for CIFAR-100 is the same as for CIFAR-10: 30 epochs with a cyclic learning rate linearly
increasing from 0 to 0.2 during the first half of the training then decreasing back to 0. 53

4.8 Certified training techniques can prevent CO for N-FGSM when training PreactResNet18 on
CIFAR-10, overcoming the robustness of PGD-5 for 𝜖 = 24/255 while incurring less overhead. The
training schedule is the 30 epochs schedule as in Figure 4.5. 54

4.9 When training PreactResNet18, certified training techniques can prevent CO on CIFAR-100,
albeit decreasing the average empirical robustness for perturbation radii they were not tuned
for. N-FGSM does not display CO for SVHN on the same network: ForwAbs results nevertheless
in minor average empirical robustness improvements, while MTL-IBP induces CO at 𝜖 = 12/255
(means and 95% CIs over 5 runs). The CIFAR-100 is the same short schedule as CIFAR-10. On
SVHN the training is done for 15 epochs, with a cyclic learning rate linearly increasing from 0
to 0.05 during 6 epochs, then decreasing back to 0 for the remaining 9 epochs. Furthermore, for
SVHN only, the attack perturbation radius is ramped up from 0 to 𝜖 during the first 5 epochs,
following Jorge et al. [4] . 55

4.10 Comparison of certified training techniques with ELLE-A [7], a the state-of-the-art regularizer
for singe-step adversarial training. Setup from Figure 4.8 and Figure 4.9. We report means over 5
repetitions and their 95% confidence intervals. 56

4.11 Clean accuracies for the experiments reported in Figure 4.10 . 57
4.12 When training CNN-7 and CNN-5 on CIFAR-10, ForwAbs and Exp-IBP prevent CO while displaying

stronger empirical robustness than PGD-5 for 𝜖 ≥ 20/255, and matching PGD-10 for CNN-5 at
𝜖 = 24/255. AutoAttack (solid lines) and IBP (dashed) accuracies are reported (means and 95% CIs
for 5 runs). As seen in Table 4.1, CNN-7 features an IBP loss almost two orders of magnitude larger
than CNN-5, explaining the qualitative differences in this figure. 58

4.13 When training CNN-7 and CNN-5 for CIFAR-100, ForwAbs and Exp-IBP display better performance
trade-offs than on the deeper PreActResNet18 but still fail to improve on multi-step attacks.
AutoAttack (solid lines) and IBP (dashed) accuracies are reported (means and 95% CIs for 5 runs). 58

4.14 Effect of scheduling the bounding perturbation radius and 𝛼 on the IBP certified robustness
attained by CC-IBP, MTL-IBP and SABR on the PreActResNet18 training setup from Jorge et al.
[4]. Validation results on CIFAR-10 under perturbations of 𝜖 = 8/255. Hyperparameters are: 𝛼 = 0.1
for Exp-IBP, 𝛼 = 10−6 for CC-IBP and MTL-IBP with scheduling, 𝛼 = 10−15 for CC-IBP and
MTL-IBP without scheduling, 𝛼 = 10−4 for SABR with scheduling and 𝛼 = 10−9 for SABR without
scheduling. They are chosen to reduce the IBP loss as much as possible on the validation set. . 61

4.15 Sensitivity of Exp-IBP and ForwAbs to their respective coefficients, 𝛼 and 𝜆, when training
PreActResNet18 for ℓ∞ perturbations of 𝜖 = 20/255. Plot 4.15c displays the legend for all sub-figures,
which log standard accuracy (Clean), empirical robust accuracies to PGD-50 and AutoAttack (AA),
and IBP verified robust accuracy on the standard test sets. 62

4.16 Sensitivity of Exp-IBP and ForwAbs to their respective coefficients, 𝛼 and 𝜆, on CNN-7 for ℓ∞
perturbations of 𝜖 = 20/255 using the cyclic training schedule. Plot 4.16b displays the legend for all
sub-figures. 63

4.17 Box plots (10 repetitions) for the CIFAR-10 training time of a single epoch (using a 80% subset of
the training set) on CNN-7 and CNN-5. 63

4.18 Trade-offs between estimated per-epoch runtime and AA accuracy on CIFAR-10 for 𝜖 = 24/255. . 66
4.19 Clean accuracies for the experiments from Figure 4.8, Figure 4.9, Figure 4.12, and Figure 4.13.

Means and 95% confidence intervals over 5 repetitions. 67
4.20 IBP losses of methods from Section 4.1 for the experiments from Figure 4.8, Figure 4.9, Figure

4.12 and Figure 4.13. Means and standard deviations over 5 repetitions. The significantly smaller
IBP loss values associated with maximal AutoAttack accuracy come at a larger cost in terms of
empirical robustness, resulting in worse performance trade-offs. 68

List of Tables

2.1 Comparison of the expressive losses from with literature results for ℓ∞ norm perturbations on
CIFAR-10, TinyImageNet and downscaled (64 × 64) ImageNet. The entries corresponding to the
best standard or verified robust accuracy for each perturbation radius are highlighted in bold. . 21

3.1 Number of one-pass analysis necessary to prove several properties on the ACAS benchmark, using
the DeepPoly domain . 36

3.2 Total time in seconds to prove properties 1, 3 and 4 of the ACAS Benchmark. *: We exclude two
networks where ERAN times out and report the total time over the remaining networks. 37

3.3 Number of one-pass analysis necessary to prove several properties on a 3x25 fully-connected ReLU
network, using the DeepPoly and DeepZono domains (marked respectively with "P" and "Z") . 38

3.4 Number of one-pass analysis necessary to prove two properties on a 3x25 fully-connected Sigmoid
network, using the DeepZono domain . 38

3.5 Percentage of the feasible space, using the DeepPoly domain in Libra for different configuration of
𝐿 and𝑈 . 38

3.6 We report the rank out of the participating tools in each benchmark as well as the number of
instances verified (the behavior of the networks satisfied the specification for all the specified input
space) and falsified (a counterexample was successfully found). For Dist-Shift all three tools verify
and falsify every property except for one where they all timeout (on the same property). As no tool
solves every property and no ground-truth is provided we cannot compute coverage of verified /
falsified instances but can report a global coverage of 98.6 % of instances solved overall for all three
tools. 39

3.7 VNN-COMP 2024 benchmarks where PyRAT relies on ReCIPH scores and input partitioning. . 39

4.1 IBP loss at initialization for the network architectures considered in this work, computed on the
CIFAR-10 training set against perturbations of radius 𝜖 = 24/255 (means and standard deviations for
5 runs). 47

4.2 When training CNN-7 with the long training schedule, Exp-IBP consistently improves on the
average empirical robustness of PGD-5 on CIFAR-10, with IBP outperforming PGD-10 for 𝜖 ≥ 16/255.
Multi-step adversarial training displays the best performance on CIFAR-100. Bold entries indicate
the best AA or IBP accuracy for each setting. Italics denote AA accuracy improvements on PGD-5.
Means and 95% CIs for 5 runs are reported. 59

4.3 Effect of model architecture on AutoAttack accuracy on CIFAR-10 with 𝜖 = 24/255. Results from
Figure 4.8a, Figure 4.12a, and Figure 4.12b (means and standard deviations for 5 runs). 60

4.4 Exp-IBP, MTL-IBP and ForwAbs coefficients for figures 4.8 to 4.13, figure 4.19, figure 4.20, and
Table 4.2. 60

4.5 Clean accuracies and IBP losses for the experiments in Table 4.2. 64

4.6 CO study on CNN-7 setups from the certified training literature. We report mean and 95% over
5 runs for the one-step attack used in most expressive loss results from De Palma et al. [8], and
compare it with the best AutoAttack accuracy across the relative published CC-IBP, MTL-IBP and
Exp-IBP checkpoints [8]. 71

5.1 Average time (in ms) and standard deviation to compute the different traversal orders on a CNN-7
network on CIFAR-10. We use 𝜖 = 4/255. The times are measured on a NVIDIA H100 GPU across
the first 1000 samples of the CIFAR-10 test set. For occlusion and IBP bounds the computation is
entirely batched (i. e. with batch size of 1024). We train the network using three different training
procedures: standard training (Clean), adversarial training (PGD) and certified training with the
CC-IBP loss [8]. 82

5.2 Additional irrelevant features after the dichotomy search on MNIST. |I| is the mean size of the
final irrelevant set after the full execution of VeriX-incomplete and Δ𝑑𝑖𝑐ℎ𝑜 is the mean number of
additional features proven irrelevant by the VeriX-incomplete algorithm after the dichotomy search. 83

5.3 Additional irrelevant features after the dichotomy search on CIFAR-10. Evaluation results are
grouped by model and traversal orders. The additional irrelevant features proven aftter the
dichotomy search Δ𝑑𝑖𝑐ℎ𝑜 are minimal, especially when using certified training. We highlight in bold
the best traversal order for earch model (larger size of irrelevant set is better). On the clean model
IBP bounds ordering performs best while on the CC-IBP model the linear coefficients ordering is
the best. 84

5.4 Comparison of traversal orders on CIFAR-10 and TinyImageNet using VeriX-incomplete with only
the dichotomy search. Larger size of the irrelevant set is better. For each model we highlight in bold
the best traversal order. The epsilon used is 𝜖 = 4/255 for both datasets. The results are averaged
over 300 samples of the test set for CIFAR-10 and 200 samples of the test set for TinyImageNet. For
CIFAR-10 the total number of features is 1024 and for TinyImageNet it is 4096. 84

5.5 CIFAR-10 results of VeriX-incomplete with only the dichotomy search and CROWN as the
underlying verifier. The results are averaged over 300 samples of the test set. The total number of
features is 1024. We report under EFX𝜖

𝐴𝐴
the number of empirically 𝜖-formally explainable samples

as defined in Definition 5.1.3, using AutoAttack as the adversary. 85

5.6 Evaluation results on CIFAR-10. Larger size of the irrelevant set is better. The total number of
features for CIFAR-10 is 1024. We highlight in bold the best result for each metric and for each
𝜖-test, focusing on the robust training methods. We include the standardly trained model to gage
the trade-offs. Expectedly, it offers the best clean accuracy, but not necessarily the best empirically
𝜖-formally explainable rate: for some samples it is not possible to find even one robust feature. . 87

5.7 Evaluation results on TinyImageNet. The total number of features is 4096 (64 × 64). We highlight
in bold the best result for each metric and for each 𝜖-test, focusing on the robust training methods.
We include the standardly trained model to gage the trade-offs. Expectedly, it offers the best clean
accuracy and empirically 𝜖-formally explainable rate as it is always possible to find adversarial
examples within the perturbation budget. However, it offers the worst size of the irrelevant set. 88

[9]: Krizhevsky et al. (2012), ‘ImageNet
Classification with Deep Convolutional
Neural Networks’

[10]: Silver et al. (2016), ‘Mastering the
game of Go with deep neural networks
and tree search’

[11]: Brown et al. (2020), ‘Language Mod-
els are Few-Shot Learners’

[12]: Jumper et al. (2021), ‘Highly ac-
curate protein structure prediction with
AlphaFold’
[13]: Rosenblatt (1958), ‘The perceptron: a
probabilistic model for information stor-
age and organization in the brain.’
[14]: Linnainmaa (1976), ‘Taylor expan-
sion of the accumulated rounding error’

[15]: Werbos (1982), ‘Applications of ad-
vances in nonlinear sensitivity analysis’

[16]: Rumelhart et al. (1986), ‘Learning
representations by back-propagating er-
rors’
[17]: Fukushima (1980), ‘Neocognitron:

A self-organizing neural network model
for a mechanism of pattern recognition
unaffected by shift in position’

Introduction 1
1.1 Over-Approximations and

Trustworthy AI 1
1.1.1 Verification of Software

Systems 1
1.1.2 Over-Approximations of

Neural Networks 2
1.1.3 Robustness of Neural

Networks 4
1.2 Tightening Bounds for

Verification 4
1.3 Over-approximations

beyond verified robustness 5
1.3.1 Empirical Robustness . . . 5
1.3.2 Explainability of Neural

Networks 6

Deep learning has seen great success in the past decades [9–12]. The
rise of Large Language Models (LLMs) has brought the capabilities of
modern artificial intelligence (AI) systems to the general public, leading
many to become active users. We focus in this thesis on connection-
ist AI, or machine learning, which relies on data to train models, as
opposed to symbolic AI, which relies on explicit knowledge and hand-
crafted rules. We are interested in particular in the family of models
known as neural networks. The success of neural networks has not
followed a straightforward trajectory. After the pioneering work on
the perceptron by Rosenblatt in the late 1950s [13], the field of ma-
chine learning (ML) entered a period of reduced interest, commonly
referred to as the "AI winter". A series of breakthroughs, including
the development of the efficient backpropagation algorithm [14–16], the
introduction of convolutional neural networks [17] and their training
by backpropagation [18, 19], the advent of Graphical Processing Units
(GPUs) for training [20], and the availability of large datasets such as
ImageNet [21], paved the way for the current deep learning revolution.

Figure 1.1: Incidents involving
AI systems since 2015. The chart
comes from https://airisk.
mit.edu/ai-incident-tracker/
timeline-risk-classification, the
data from https://incidentdatabase.
ai/. Completing the legend: 5: Human-
Computer Interaction, 6: Socioeconomic
and Environmental, 7: AI system safety,
failures and limitations.

As AI systems are increasingly adopted in real-world applications, in-
cluding safety-critical domains such as autonomous driving [22] and
medical diagnosis [23], the need for reliable and trustworthy AI has
become paramount. AI-related incidents have risen sharply in recent
years, particularly those involving malicious actors, as illustrated in
Figure 1.1. Such incidents range from biased decision-making [24] and
safety failures in autonomous systems [25] to malicious uses of AI, such
as deepfakes in automated disinformation campaigns [26]. Governments
and regulatory bodies are increasingly recognizing the need for trust-
worthy AI, as exemplified by the European Union’s AI Act [27]. Ensuring
the reliability of AI systems requires rigorous methods to verify their
behavior, a challenge that has long been central in the broader field of
software verification.

1.1 Over-Approximations and Trustworthy AI

1.1.1 Verification of Software Systems

The need for reliable and trustworthy systems is not unique to AI. We
briefly discuss the field of software verification, as it has inspired many
of the techniques used in building trustworthy AI systems. On a more

https://airisk.mit.edu/ai-incident-tracker/timeline-risk-classification
https://airisk.mit.edu/ai-incident-tracker/timeline-risk-classification
https://airisk.mit.edu/ai-incident-tracker/timeline-risk-classification
https://incidentdatabase.ai/
https://incidentdatabase.ai/

2 1 Introduction

[18]: Zhang et al. (1990), ‘Parallel dis-
tributed processing model with local
space-invariant interconnections and its
optical architecture’

[19]: LeCun et al. (1989), ‘Backpropaga-
tion Applied to Handwritten Zip Code
Recognition’
[20]: Raina et al. (2009), ‘Large-scale deep
unsupervised learning using graphics
processors’
[21]: Deng et al. (2009), ‘Imagenet: A

large-scale hierarchical image database’
[22]: Zhao et al. (2025), ‘A Survey of Au-
tonomous Driving from a Deep Learning
Perspective’
[23]: Ahsan et al. (2022), ‘Machine-

learning-based disease diagnosis: A com-
prehensive review’
[24]: Angwin et al. (2016), Machine Bias:

There’s software used across the country

to predict future criminals. And it’s biased

against blacks

[25]: Wikipedia contributors (2024), List

of Tesla Autopilot crashes

[26]: Zellers et al. (2019), ‘Defending
against neural fake news’
[27]: European Union (2024), Regulation

(EU) 2024/1689 Artificial Intelligence Act

[28]: Kirchner et al. (2015), ‘Frama-C: A
software analysis perspective’
[29]: Blanchet et al. (2002), ‘Design and
Implementation of a Special-Purpose
Static Program Analyzer for Safety-
Critical Real-Time Embedded Software’
[30]: Clarke and Emerson (1982), ‘De-

sign and synthesis of synchronization
skeletons using branching time temporal
logic’
[31]: Coquand and Huet (1986), The cal-

culus of constructions

[32]: Paulson (1989), ‘The foundation of
a generic theorem prover’
[33]: Cousot and Cousot (1977), ‘Abstract
Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Con-
struction or Approximation of Fixpoints’
1: https://esamultimedia.esa.int/
docs/esa-x-1819eng.pdf

[34]: Leveson and Turner (1993), ‘An
investigation of the Therac-25 accidents’
[35]: Rice (1953), ‘Classes of recursively
enumerable sets and their decision prob-
lems’
2: Non-trivial properties are properties
that are neither true nor false for every
program.
Abstract interpretation is not restricted
to the analysis of numerical properties.
It is underpinned by a rich mathematical
theory based on lattice theory. We refer
to Cousot [36] for more details.
[37]: Madry et al. (2018), ‘Towards Deep
Learning Models Resistant to Adversar-
ial Attacks’

personal note, formal verification has historically been the focus of both
laboratories I have been affiliated with during my thesis: the ANTIQUE
team at Inria Paris / École normale supérieure (ENS) and the Laboratoire

de Sûreté et de Sécurité du Logiciel (LSL) at CEA LIST. Both have developed
major industrial tools for software verification: Frama-C [28], developed
at LSL, and Astrée [29], developed at ANTIQUE. Software verification has
been an active field of research for decades, with the goal of ensuring that
programs behave as intended and are free from bugs and vulnerabilities.
Formal methods, such as model checking [30], theorem proving [31,
32], and abstract interpretation [33] have been developed to provide
mathematical guarantees about the correctness of software systems. Such
methods are crucial for ensuring the reliability of safety-critical systems,
where testing alone is insufficient. The infamous Ariane 5 launch failure
in 1996 cost 370 million US dollars and was caused by a software error
undetected during testing1. Beyond financial losses, undetected software
problems can lead to fatalities: the Therac-25 radiation therapy machine
caused several deaths in the 1980s due to software errors [34]. These
incidents highlight the importance of formal verification methods for
ensuring the safety and reliability of software systems.

Automated software verification faces a fundamental theoretical limi-
tation: it cannot simultaneously be complete (able to verify all correct
programs), sound (never producing false negatives—that is, if the ver-
ifier claims a program is correct, it actually is), and fully automated.
This impossibility is a consequence of Rice’s theorem [35] about the
undecidability of non-trivial software properties2. Abstract Interpreta-
tion in particular trades completeness for soundness and automation by
over-approximating program behaviors, e.g. for static analysis. Using
abstract domains and transfer functions defined for them one can ana-
lyze properties of a program. For example when analyzing numerical
properties of a program, e.g. the absence of overflow, an abstract domain
(such as intervals) and transfer functions can be used to compute sound
over-approximations of the possible values of the variables at different
points in the program and prove the absence of overflow, without actually
executing the program on every possible input.

1.1.2 Over-Approximations of Neural Networks

In the context of neural networks, over-approximations refer to a family
of techniques designed to bound the range of possible outputs of a model,
given a range of possible inputs. This is done by propagating sound
bounds on the inputs through the network: although the exact reachable
space at each layer may not be known, it is always contained within the
propagated bounds. As a result, the bounds on the outputs encompass
all possible outputs for inputs within the specified range. These over-
approximated bounds can then be used to demonstrate that the network’s
decision is stable within the input range. However, if the bounds are
too loose, the verification process may be inconclusive. Because bound
propagation is typically differentiable, it is possible to incorporate bounds
into the training process. This approach is known as certified training,
or provably robust training, as it enforces a sound verifiable robustness
guarantee on the trained network. A schematic representation of the
idea is given in Figure 1.2. On the other hand, adversarial training [37]
relies on finding specific perturbations of the training data that fool the
network and training the network to be robust to these perturbations.

https://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
https://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

1.1 Over-Approximations and Trustworthy AI 3

Figure 1.2: Over-approximating neural
networks outputs for verification and
training. Credit: ETH Zurich SRI Lab.

[38]: Gehr et al. (2018), ‘AI2: Safety and
Robustness Certification of Neural Net-
works with Abstract Interpretation’
[39]: Singh et al. (2018), ‘Fast and Effec-
tive Robustness Certification’
[40]: Singh et al. (2019), ‘An Abstract

Domain for Certifying Neural Networks’
3: https://github.com/eth-sri/
eran

4: https://github.com/eth-sri/
mn-bab

[41]: Ferrari et al. (2022), ‘Complete Ver-
ification via Multi-Neuron Relaxation
Guided Branch-and-Bound’
[42]: Wong and Kolter (2018), ‘Provable
defenses against adversarial examples
via the convex outer adversarial poly-
tope’
[43]: Weng et al. (2018), ‘Towards fast

computation of certified robustness for
ReLU networks’
5: In Wong and Kolter [42], the goal is
to train robust networks, while Weng
et al. [43] aims to compute the largest
input range on which a trained network
is robust
[44]: Wong et al. (2018), ‘Scaling provable
adversarial defenses’

Related terminology The term bound propagation is often used to de-
scribe the techniques underlying neural network over-approximation: the
range of outputs is derived by propagating bounds on the inputs through
the network. Reachability analysis also relates to the idea: the goal is
to compute the set of possible outputs (the reachable set) from a given
set of inputs. We note however that while over-approximations can be
used for reachability analysis the term also includes techniques for exact
reachable set computation. Linear approximations or linear relaxations
are also central for neural network over-approximation. Efficient and
precise bound propagation requires approximating the non-linear behav-
ior of neural networks with linear functions. Finally, the term abstract
domains, or simply abstractions, from abstract interpretation theory, are
also used to refer to some implementations of over-approximations from
this perspective.

Remark 1.1.1 Linear approximations (or relaxations) can be used to
propagate lower and upper bounds through the network directly using
its weights, but also to model the bounding problem in a suitable
formulation for off-the-shelf solvers, such as Linear Programming (LP)
solvers. In this thesis we focus on the former use of linear approxima-
tions.

Brief history These techniques have been developed by both the ma-
chine learning and formal methods communities, often concurrently,
starting in 2017 and 2018. From an abstract interpretation perspective,
notable works include [38] with the AI2 tool, [39] with DeepZ (a zono-
tope abstraction), and [40] with DeepPoly (a polyhedra abstraction), both
adapted to neural networks and implemented in the ERAN tool3 and
its successor, MN-BAB4 [41]. From the machine learning perspective,
[42] and [43] used equivalent linear approximations for bound prop-
agation5. Later that same year, [44] extended their approach to more
architectures, including networks with skip connections and general

https://github.com/eth-sri/eran
https://github.com/eth-sri/eran
https://github.com/eth-sri/mn-bab
https://github.com/eth-sri/mn-bab

4 1 Introduction

[45]: Zhang et al. (2018), ‘Efficient Neural
Network Robustness Certification with
General Activation Functions’
6: https://github.com/
Verified-Intelligence/auto_LiRPA

[46]: Xu et al. (2020), ‘Automatic Per-
turbation Analysis for Scalable Certified
Robustness and Beyond’
7: https://github.com/
Verified-Intelligence/
alpha-beta-CROWN

[47]: Liu et al. (2019), ‘Algorithms for
Verifying Deep Neural Networks’
[48]: Albarghouthi (2021), ‘Introduction
to Neural Network Verification’
[49]: Urban and Miné (2021), ‘A Review
of Formal Methods applied to Machine
Learning’

Figure 1.3: An adversarial example for
an image classifier. A small perturbation
(amplified for visualization purposes) is
added to the original image of a panda,
leading the network to misclassify it as
a gibbon with high confidence. Figure
from Goodfellow et al. [1].

[1]: Goodfellow et al. (2015), ‘Explaining
and Harnessing Adversarial Examples’

[50]: Biggio et al. (2013), ‘Evasion attacks
against machine learning at test time’

[51]: Szegedy et al. (2014), ‘Intriguing
properties of neural networks’
[52]: Urban et al. (2019), ‘Perfectly Paral-
lel Fairness Certification of Neural Net-
works’
[53]: Marques-Silva and Ignatiev (2022),

‘Delivering Trustworthy AI through For-
mal XAI’
[54]: Lecuyer et al. (2019), ‘Certified ro-
bustness to adversarial examples with
differential privacy’

non-linear activation functions. Concurrently, [45] introduced CROWN,
which uses different linear (and quadratic) approximations for general
architectures. CROWN is the core abstraction used in Auto_LiRPA6 [46],
a popular library for differentiable bound propagation used for both
training and verification, particularly in 𝛼,𝛽-CROWN7, a state-of-the-art
neural network verifier. We refer to [47] for a survey of algorithms for
neural networks, not restrained to over-approximations, [48] for a peda-
gogical introduction, and [49] for a higher level perspectives on the use
of formal methods for trustworthy AI.

We introduce in chapter 2 the background and formal definitions on
neural networks, their robustness both from an empirical and from a
verified perspective. We also discuss the state of the art in certified
training, and the technical aspects of linear approximations for bound
propagation

1.1.3 Robustness of Neural Networks

A central property of neural networks studied in this thesis is their
local robustness. In simple terms, a neural network is locally robust
if its decision does not change within a small neighborhood around a
given input. Neural networks have been shown to be vulnerable to small,
carefully crafted perturbations of their inputs, the so-called adversarial
examples [1, 50, 51]. An example is shown in Figure 1.3. Robustness can
be also be defined with respect to semantically meaningful perturbations,
such as rotations, or against distribution shifts. Distribution shifts might
happen when a network is trained on data from one distribution (e.g.

images taken in daylight) and deployed on data from another (e.g., images
taken at night). Robustness can also be defined globally, particularly
for networks with low-dimensional input spaces and well-defined input
domains (such as ranges of speed and altitude for an aircraft collision
avoidance system). Beyond robustness to input perturbations, other im-
portant properties include fairness [52], explainability [53], and privacy
[54]. Local robustness is a recurrent notion in both the definition and
the verification of properties beyond the local adversarial setting. It
is mathematically well-defined, and many tools have been developed
to promote or assess it. Many works studying properties beyond local
robustness build on techniques originally developed for local robustness.
For instance, [55] prepend layers to the network to map semantically
meaningful perturbations (such as rotations) to ℓ𝑝-norm–bounded per-
turbations, and then apply local robustness verification techniques. Even
in the case of distribution shifts, robustness can be characterized in terms
of local robustness by exploiting generative models and applying per-
turbations in a latent space rather than the input space [56]. [57] employ
various verification techniques developed for robustness to reduce the
search space in fairness verification.

1.2 Tightening Bounds for Verification

Despite their usefulness, over-approximations face a fundamental trade-
off between precision and computational tractability. Tight approxima-
tions are necessary to prove meaningful properties, but they quickly
become computationally prohibitive for networks of large scale. Con-
versely, efficient over-approximations often produce bounds that are
too loose to verify properties of interest, especially for networks trained

https://github.com/Verified-Intelligence/auto_LiRPA
https://github.com/Verified-Intelligence/auto_LiRPA
https://github.com/Verified-Intelligence/alpha-beta-CROWN
https://github.com/Verified-Intelligence/alpha-beta-CROWN
https://github.com/Verified-Intelligence/alpha-beta-CROWN

1.3 Over-approximations beyond verified robustness 5

[55]: Mohapatra et al. (2020), ‘Towards
Verifying Robustness of Neural Net-
works Against A Family of Semantic Per-
turbations’
[56]: Wu et al. (2022), ‘Toward Certified
Robustness Against Real-World Distribu-
tion Shifts’
[57]: Mazzucato and Urban (2021), ‘Re-
duced Products of Abstract Domains
for Fairness Certification of Neural Net-
works’

[58]: Wang et al. (2018), ‘Formal Secu-
rity Analysis of Neural Networks Using
Symbolic Intervals’

[59]: Lemesle et al. (2024), ‘Neural Net-
work Verification with PyRAT’

[60]: Brix et al. (2024), ‘The fifth inter-
national verification of neural networks
competition (vnn-comp 2024): Summary
and results’

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’

[37]: Madry et al. (2018), ‘Towards Deep
Learning Models Resistant to Adversar-
ial Attacks’

[6]: Wong et al. (2020), ‘Fast is better than
free: Revisiting adversarial training’

[61]: Shafahi et al. (2019), ‘Adversarial
training for free!’

without explicit robustness objectives. This precision-scalability trade-off
is a central challenge in making formal methods practical for real-world
neural networks.

In Part ‘Tightening Bounds for Incomplete Verification’, we focus on
verifying relatively small neural networks with low-dimensional inputs,
where standard over-approximation techniques are tractable but too loose
to establish the desired properties. We begin by describing a simple yet
powerful technique to improve the precision of over-approximations by
partitioning the input space and verifying each part separately, introduced
in [58]. We then discuss different strategies to choose the input dimensions
on which to partition, and propose a new heuristic to prioritize the
subproblems to solve first.

Contributions In Chapter 3, we propose a new prioritizing heuristic,
ReCIPH (Relational Coefficient for an Input Partitioning Heuristic). We rely
on the linear approximations, already computed to propagate bounds, to
rank the inputs and chose the one on which to partition first. Implemented
in PyRAT [59], we evaluate it on a standard benchmark of small networks
with low-dimensional inputs and a use-case from an industrial partner,
showing the improvement over existing heuristics applied to networks
with different activation functions. We also include results in the context
of fairness verification with Libra [57] and report the results of the
relevant benchmarks of the International Verification of Neural Networks
Competition (VNN-COMP 2024) [60].

1.3 Over-approximations beyond verified
robustness

Although over-approximations have been primarily developed to verify or
enforce the provable robustness of neural networks, they can be employed
in other applications. Part ‘Applications of Certified Training’ focuses on
two applications beyond verified robustness: empirical robustness and
formal explainability. For both applications, we focus on using certified
training during the training process. We argue that integrating desirable
properties into the training process is crucial for obtaining scalable
solutions, as already observed in the case of verified robustness.

1.3.1 Empirical Robustness

Combining adversarial training with certified training has been explored
in the literature and currently represents the state of the art for training
verifiably robust networks with Expressive Losses [8]. However, their
combination for empirical robustness alone remains underexplored.
Adversarial training requires computing perturbations of the original
samples of the training data [37]. These perturbations are computed
using multiple forward and backward passes through the network, which
results in a high computational cost. To reduce this cost, single-step
adversarial training has been proposed, where only one perturbation step
is computed [6, 61]. However, single-step adversarial training suffers from
a failure mode known as catastrophic overfitting [6]: after several training
epochs, the network becomes vulnerable to multi-step attacks while
still appearing robust to single-step attacks. In Chapter 4 we investigate

6 1 Introduction

[62]: De Palma et al. (2025), ‘On Using
Certified Training towards Empirical Ro-
bustness’

The need for explainability is often moti-
vated by the so-called black box nature of
neural networks. We prefer to attribute it
instead to the scale of modern networks.
When model architectures and weights
are available to the user, the model is
not truly a black box, but its decisions
become opaque due to their complexity.
This is not unique to neural networks:
decision trees, typically considered inter-
pretable, can also become opaque when
large. In fact, neural networks can be
transformed into decision trees [63], but
the resulting trees are typically too large
to interpret.
[63]: Aytekin (2022), ‘Neural networks
are decision trees’
8: We refer to Xu-Darme [64] for a dis-
cussion and possible disambiguation of
the terms explainability, interpretability,
transparency.
[64]: Xu-Darme (2023), ‘Algorithms and
evaluation metrics for improving trust in
machine learning : application to visual
object recognition’
[65]: Simonyan et al. (2014), Deep Inside

Convolutional Networks: Visualising Image

Classification Models and Saliency Maps

[66]: Sundararajan et al. (2017), ‘Ax-
iomatic attribution for deep networks’

[67]: Smilkov et al. (2017), SmoothGrad:

removing noise by adding noise

[68]: Binder et al. (2016), ‘Layer-wise rel-
evance propagation for neural networks
with local renormalization layers’
[69]: Ribeiro et al. (2016), ‘" Why should
i trust you?" Explaining the predictions
of any classifier’
[70]: Huang and Marques-Silva (2023),

‘From Robustness to Explainability and
Back Again’

[71]: Wu et al. (2023), ‘VeriX: Towards
Verified Explainability of Deep Neural
Networks’

[72]: Bassan and Katz (2023), ‘Towards
Formal XAI: Formally Approximate Min-
imal Explanations of Neural Networks’

the use of expressive losses to both prevent catastrophic overfitting and
bridge the gap toward multi-step adversarial training.

Contributions In Chapter 4, we show that combining certified training
with single-step adversarial training, when carefully tuned, can prevent
catastrophic overfitting across several datasets and architectures. We also
show that on other settings it can bridge the gap between single-step and
multi-step adversarial training. These contributions have been published
in the Transactions on Machine Learning Research (TMLR) journal [62].

1.3.2 Explainability of Neural Networks

Another important aspect of trustworthy AI systems is their explain-
ability. We say that a model is explainable when a human user can
understand and interpret the decisions made by AI models. Explain-
ability depends on a model and on the choice of what constitutes an
explanation.8 In this thesis, we focus in particular on explanations de-
fined as a measure of importance of the input features for the model’s
decision. Most of the existing techniques to estimate feature importance
are heuristic-based and relies on gradients [65–67], perturbations [68] or
training surrogate interpretable models [69].

A recent line of work [70–72] seeks to go beyond heuristic approaches to
estimating feature importance and instead aims at Formal Explanations.
In this framework, input features are irrelevant if they provably do not
change the model’s decision, and relevant otherwise. Existing algorithms
for computing irrelevant features in neural networks involve ordering
the input features and querying a verifier for each dimension, which
yields the maximal set of irrelevant features for that ordering. This
approach relies heavily on neural network verification and faces serious
scalability issues due to repeated verification queries. Current attempts
to improve the scalability of formal explanations focus on algorithmic
enhancements applied post-training. These approaches often involve a
relaxed notion of formal explanations: the irrelevant features remain
verifiably irrelevant, but the set is no longer guaranteed to be maximal.
To make formal explainability more practical, in Chapter 5 we investigate
how certified training can be used to train networks that are easier to
explain formally.

Contributions In Chapter 5 we make contributions toward scaling
formal explainability. We introduce the notion of empirically 𝜖-formally
explainable models, which quantifies the explainability of networks in
the context of relaxed formal explanations. Inspired by the partitioning
heuristic of Chapter 3, we propose a new ordering heuristic. We show
that, on networks trained with robustness objectives, it systematically
leads to larger sets of irrelevant features, i. e. more concise explanations,
compared to existing heuristics. We introduce training method, Feature
Subset Certified Training (FSCT). This method relies on certified training
to promote robustness only on subsets of each input, aligning with
the desiderata of formal explanations. We compare FSCT with existing
certified and adversarial training approaches, highlighting the trade-offs
on CIFAR-10 and TinyImageNet. In some settings (high perturbation
budget on TinyImageNet) FSCT provides the best trade-off between
accuracy, explainability and average size of explanations.

1.3 Over-approximations beyond verified robustness 7

Each chapter of the thesis concludes with a related work section, pro-
viding a literature review on the relevant topics. The thesis ends with
a concluding chapter that summarizes the contributions and discusses
future research directions.

Notations

ℝ Set of real numbers.
ℝ𝑑 𝑑-dimensional real space.
ℕ Set of natural numbers.
𝒙 Vectors are in bold italic lowercase letters.
1 Vector of ones.
0 Vector of zeros.
𝑥 Scalars are in italic lowercase letters.
𝒙[𝑖] 𝑖-th component of a vector 𝒙.
𝑴 Matrices are in bold italic upperca+e letters.
∥𝒙∥ Norm of the vector 𝒙 (default: ℓ∞ norm).
𝐵(𝒙 , 𝜖) 𝜖-ball centered at 𝒙 induced by a norm: 𝐵(𝒙 , 𝜖) := {𝑥′ | ∥𝑥 − 𝑥′∥ < 𝜖}.
J𝑎, 𝑏K Discrete interval of integers {𝑎, 𝑎 + 1, . . . , 𝑏} for 𝑎, 𝑏 ∈ ℕ and 𝑎 < 𝑏.
J𝑛K Abuse of above notation for integers {0, . . . , 𝑛 − 1} for 𝑛 ∈ ℕ.
S ,Y ,D Generic sets are in uppercase calligraphic letters.
𝒙[S] Subvector of 𝒙 ∈ ℝ𝑑 indexed by S ⊆ J𝑑K; if |S| = 𝑑′, then 𝒙[S] ∈ ℝ𝑑′ .
I 𝑐 Complement of a set I ⊆ U : {𝑖 ∈ U | 𝑖 ∉ I} (e.g., U = J𝑑K).
𝑓𝜃 Neural network with parameters 𝜽.

Background and Context

argmax𝑘∈J𝐾K 𝒙[𝑘] is a short notation
for the index of the component
of 𝒙 ∈ ℝ𝐾 with maximum value
argmax𝑘∈J𝑛K {𝒙[𝑘] : 𝑘 ∈ {0, . . . 𝑛}}with
𝒙 some vector of ℝ𝐾 .
[9]: Krizhevsky et al. (2012), ‘ImageNet
Classification with Deep Convolutional
Neural Networks’

1: For simplicity, we abuse notations and
use 𝜎 to denote both the activation func-
tion defined as real functions: 𝜎 : ℝ→ ℝ,
and its elementwise extension to vectors
𝒙 ∈ ℝ𝑑 , obtained by applying it to each
coordinate.

Background 2
2.1 Supervised Classification

and Neural Networks . . 13
2.1.1 Neural Networks 13
2.1.2 Neural Network Training 14
2.2 Robustness of Neural

Networks 15
2.2.1 Adversarial Training . . . 15
2.2.2 Single Step Adversarial

Training and Catastrophic
Overfitting 16

2.2.3 Certified Training and
Verified Robustness 17

2.2.4 A first approximation: In-
terval Bound Propagation 18

2.3 Hybrid Methods: state of
the art in certified training19

2.3.1 SABR: Small Adversarial
Bounding Regions 19

2.3.2 Expressive Losses 20
2.4 Bound Propagation: over-

approximating neural
networks 22

2.4.1 Neural Networks as com-
putational graphs 22

2.4.2 Linear Approximations for
Neural Network Verifica-
tion 23

2.4.3 Linear approximations and
certified training 26

2.4.4 Beyond linear approxima-
tions 27

We first present the necessary background on neural networks, their
training and the problem of their robustness. We introduce some of
the classical methods to train them in a robust manner and to verify
formally their robustness. We focus on bound propagation methods, in
particular Interval Bound Propagation (IBP), central to the training of
robust models, and linear approximations, used in verification.

2.1 Supervised Classification and Neural
Networks

We focus in this thesis on the problem of supervised classification. Let X
be the input space, for example X = ℝ𝑑, and Y be the output space, for
example Y = J𝐾K for a multiclass classification problem with 𝐾 classes.

Given a dataset D = {(𝒙(𝑖) , 𝑦(𝑖))}𝑛
𝑖=1 ⊆ X × Y , with 𝑛 data points the

goal of supervised classification is to find a function 𝑓 : X → ℝ𝐾 such
that argmax𝑘∈J𝐾K 𝑓 (𝒙(𝑖))[𝑘] = 𝑦(𝑖) for all samples 𝒙(𝑖), with 𝑓 ∈ F some
family of functions, called hypothesis class. In this thesis we focus on
the class of neural networks.

2.1.1 Neural Networks

A popular family of functions used to solve the classification problem
are neural networks, particularly used for image classification since the
success of AlexNet [9] in 2012.

In their simplest form neural networks can be seen as the composition of
functions, alternating between linear and non-linear functions, applied
sequentially to the input.

Definition 2.1.1 (Neural Network) A neural network 𝑓𝜃 parametrized by

𝜃 is a function 𝑓𝜃 : X → ℝ𝐾
that can be expressed as a composition of 𝐿

functions 𝑓1 , . . . , 𝑓𝐿 such that:

𝑓𝜃(𝒙) =
(
𝑓𝐿 ◦ 𝑓𝐿−1 ◦ · · · ◦ 𝑓2 ◦ 𝑓1

)
(𝒙) (2.1)

with each function 𝑓𝑙 , 𝑙 ∈ {1, . . . 𝐿} defined as:

𝑓𝑙(𝒙) = 𝜎
(
𝜙𝑙(𝒙)

)
(2.2)

where 𝜎 is a non-linear activation function1 and 𝜙𝑙 a linear function.
Common activation functions include:

▶ ReLU (Rectified Linear Unit) 𝜎(𝑥) = max(0, 𝑥)

▶ sigmoid: 𝜎(𝑥) = 1
1 + 𝑒−𝑥

▶ tanh: 𝜎(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 .

14 2 Background

Definition 2.1.2 (Cross-entropy) The

cross-entropy loss is defined as

L(𝒙 , 𝑦) = − log

(
𝑒𝒙[𝑦]∑𝐾
𝑘=1 𝑒

𝒙[𝑘]

)
for a vector 𝒙 ∈ ℝ𝐾

and a label 𝑦 ∈ J𝑘K.

Remark 2.1.1 Loss functions are cen-
tral to machine learning. They can also
be called cost functions or objective
functions. They can be defined on one-
hot encoded labels, so that 𝑦 has the
same dimension as 𝒙, they can also ex-
pect probabilities as inputs, in which
case the softmax function is applied
to the logits before computing the loss.
In practice, we use the cross-entropy
loss expecting logits and integer labels
as the training frameworks (PyTorch,
TensorFlow . . .) combine the softmax
and cross-entropy in a single function
for numerical stability.

2: A careful reader will wonder about
networks with ReLU activations: they
are not differentiable on their entire in-
put space as the ReLU function is not
differentiable in 0. However, they are dif-
ferentiable almost-everywhere: the non-
differentiable inputs have measure 0 in
the input space. In practice ReLU acti-
vations are commonly used in training
neural networks.
[14]: Linnainmaa (1976), ‘Taylor expan-
sion of the accumulated rounding error’

[17]: Fukushima (1980), ‘Neocognitron:
A self-organizing neural network model
for a mechanism of pattern recognition
unaffected by shift in position’

[32]: Paulson (1989), ‘The foundation of
a generic theorem prover’
[73]: Arora et al. (2019), ‘A Convergence

Analysis of Gradient Descent for Deep
Linear Neural Networks’

[74]: Zhang et al. (2019), ‘Fast Conver-
gence of Natural Gradient Descent for
Over-Parameterized Neural Networks’

Example 2.1.1 (Multi-layer Perceptron) In the case of a multi-layer
perceptron (MLP), also called Fully Connected Network (FCN), the
functions are simply affine transformations: 𝜙𝑙(𝒙) = 𝑾𝑙𝒙 + 𝒃𝑙 , where
𝑾𝑙 is a weight matrix and 𝒃𝑙 is a bias vector of appropriate dimensions.
In this case the parameters 𝜃 are the weights and biases of the network:
𝜃 = {𝑾𝑙 , 𝒃𝑙}𝐿𝑙=1.

The raw outputs of the network 𝑓𝜃(𝒙) are called logits.

2.1.2 Neural Network Training

Given a dataset D = {(𝒙(𝑖) , 𝑦(𝑖))}𝑛
𝑖=1, the goal of neural network training

is to find the parameters 𝜃 minimizing the empirical risk:

min
𝜃

𝑛∑
𝑖=1

L
(
𝑓𝜃(𝒙(𝑖)), 𝑦(𝑖)

)
(2.3)

with L a loss function, typically the cross-entropy loss for multiclass
classification. While the problem is non-convex due to the use of non-
linear activation functions it can be solved approximately using gradient
descent methods.

For a differentiable function 𝜑 : ℝ𝑑 → ℝ, we denote its gradient by ∇𝜑.
Moreover, if 𝜃 is some set of parameters involved in the computation of
𝜙, we denote by ∇𝜃𝜙 the gradient of 𝜙 with respect to the parameters
𝜃2. Similarly, we denote by ∇𝒙𝜙 ∈ ℝ𝑑 the gradient of 𝜙 with respect
to its input 𝒙. The gradient of the loss function L with respect to the
parameters 𝜃 can be computed efficiently using backpropagation [14, 17,
32], an application of the chain rule of differentiation. The parameters 𝜃
are updated iteratively using the gradient of the loss function:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃L
(
𝑓𝜃(𝒙(𝑖);𝜃𝑡), 𝑦(𝑖)

)
(2.4)

with 𝜂 the learning rate, controlling the magnitude of the update, and
𝑡 the iteration index. The training is typically done by processing mini-
batches of the dataset randomly sampled (Stochastic Gradient Descent).
One epoch is defined as a full pass over the dataset, i. e., processing all
samples once.

Training in practice Although we mentioned that gradient descent can
approximately solve the empirical risk minimization problem Eq. (2.3),
there is no guarantee that it will find a good solution for most non-convex
problems. Convergence analysis is an active area of research [73, 74] and
theoretical results applies to specific settings. In practice the distribution
of the data is unknown, and the machine learning practitioner has to
experimentally find a good set of hyperparameters (learning rate, batch
size, architecture, etc.) to obtain a model that has good performance and
generalizes well on unseen data. Crucially, the dataset D is randomly
split into a training set, used to train the model, and a test set, used
to evaluate the performance of the trained model on unseen data. The
performance is typically measured as the accuracy on the test set: the
proportion of samples correctly classified by the model. When iterating
over hyperparameters, a third subset, called the validation set, is used to
avoid overfitting the test set.

2.2 Robustness of Neural Networks 15

[18]: Zhang et al. (1990), ‘Parallel dis-
tributed processing model with local
space-invariant interconnections and its
optical architecture’

[19]: LeCun et al. (1989), ‘Backpropaga-
tion Applied to Handwritten Zip Code
Recognition’
[75]: He et al. (2016), ‘Identity mappings
in deep residual networks’
[76]: Ioffe and Szegedy (2015), ‘Batch Nor-
malization: Accelerating Deep Network
Training by Reducing Internal Covariate
Shift’
[77]: Srivastava et al. (2014), ‘Dropout: A
Simple Way to Prevent Neural Networks
from Overfitting’
[78]: Murphy (2022), Probabilistic Ma-

chine Learning: An introduction

[1]: Goodfellow et al. (2015), ‘Explaining
and Harnessing Adversarial Examples’

[50]: Biggio et al. (2013), ‘Evasion attacks
against machine learning at test time’

[51]: Szegedy et al. (2014), ‘Intriguing
properties of neural networks’

Reminder: 𝐵(𝒙 , 𝜖) is defined as the 𝜖-ball
centered at 𝒙 induced by the norm ∥ · ∥:
𝐵(𝒙 , 𝜖) := {𝒙′ | ∥𝒙 − 𝒙′∥ < 𝜖}.

The ℓ∞ norm of a vector 𝒙 ∈ ℝ𝑑 is defined
as ∥𝒙∥∞ = max𝑖∈J𝑑K |𝒙[𝑖]|.
[37]: Madry et al. (2018), ‘Towards Deep
Learning Models Resistant to Adversar-
ial Attacks’

We did not go into details about the modern architectures of neural
networks (convolutions [17–19], residual connections [75] . . .) or the
training techniques (batch normalization [76], dropout [77]. . .) as they
are not central to the contributions of this thesis. We refer the interested
reader to Murphy [78] for a comprehensive introduction to deep learning.
We will state the standard architectures and training techniques used in
our experiments in the corresponding sections.

2.2 Robustness of Neural Networks

Seminal works [1, 50, 51] have shown that neural networks are vulnerable
to small input perturbations, which can lead to misclassification.

Definition 2.2.1 (Adversarial Examples) Given a norm ∥ · ∥ on the input

space X , a perturbation budget 𝜖 > 0, a neural network 𝑓𝜃 we say that a

perturbation 𝛿 ∈ ℝ𝑑
is a successful adversarial perturbation of an input

sample (𝒙 , 𝑦) ∼ D if:

∥𝛿∥ ≤ 𝜖 and argmax
𝑘∈J𝑘K

𝑓𝜃(𝒙 + 𝛿)[𝑘] ≠ 𝑦. (2.5)

𝒙adv = 𝒙 + 𝛿 is called an adversarial example for the input 𝒙 and label 𝑦.

Definition 2.2.2 (Local Robustness) A neural network 𝑓𝜃 is locally
robust at an input sample (𝒙 , 𝑦) ∼ D, with respect to a perturbation budget

𝜖 > 0, if no successful adversarial perturbation exists:

∀𝒙′ ∈ 𝐵(𝒙 , 𝜖) : argmax
𝑘∈J𝑘K

𝑓𝜃(𝒙′)[𝑘] = 𝑦 (2.6)

Unless stated otherwise, we will consider the ℓ∞ norm in the rest of this
thesis. The problem of robust classification [37] is a modification of the
standard supervised classification problem Eq. (2.3) where the goal is
now to find parameters 𝜃 minimizing the loss computed over the worst
case perturbation of the input samples:

min
𝜃

𝑛∑
𝑖=1

max
𝒙′∈𝐵(𝒙(𝑖) ,𝜖)

L
(
𝑓𝜃(𝒙′), 𝑦(𝑖)

)
. (2.7)

We refer to the loss function on the worst-case perturbation as the robust
loss:

Lrob(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) := max
𝒙′∈𝐵(𝒙 ,𝜖)

L
(
𝑓𝜃(𝒙′), 𝑦

)
. (2.8)

This min–max formulation requires solving a non-concave optimization
problem in the inner maximization, which is generally intractable. Two
popular families of methods address this challenge: under-approximating
the inner maximization (adversarial training) or over-approximating it
(certified training).

2.2.1 Adversarial Training

Adversarial training operates by first generating adversarial examples
for each input sample, using an adversarial attack algorithm 𝔸, and

16 2 Background

[37]: Madry et al. (2018), ‘Towards Deep
Learning Models Resistant to Adversar-
ial Attacks’
Projecting onto an ℓ∞ ball simply consists
in clipping each coordinate of the vector:
Π𝐵(𝒙 ,𝜖)(𝒗 = min(max(𝒗 , 𝒙 − 𝜖), 𝒙 + 𝜖).
[79]: Croce and Hein (2020), ‘Reliable

evaluation of adversarial robustness with
an ensemble of diverse parameter-free
attacks’
[80]: Rice et al. (2020), ‘Overfitting in
adversarially robust deep learning’
[81]: Chen et al. (2020), ‘Robust over-
fitting may be mitigated by properly
learned smoothening’
[82]: Wang et al. (2024), ‘Balance, im-
balance, and rebalance: Understanding
robust overfitting from a minimax game
perspective’

[4]: Jorge et al. (2022), ‘Make Some Noise:
Reliable and Efficient Single-Step Adver-
sarial Training’

[6]: Wong et al. (2020), ‘Fast is better than
free: Revisiting adversarial training’

[61]: Shafahi et al. (2019), ‘Adversarial
training for free!’
[1]: Goodfellow et al. (2015), ‘Explaining
and Harnessing Adversarial Examples’

[83]: Vivek and Babu (2020), ‘Single-
step adversarial training with dropout
scheduling’

[84]: Park and Lee (2021), ‘Reliably fast
adversarial training via latent adversarial
perturbation’

[85]: Li et al. (2022), ‘Subspace adversar-
ial training’

[86]: Tsiligkaridis and Roberts (2022),
‘Understanding and increasing efficiency
of frank-wolfe adversarial training’

[87]: Sriramanan et al. (2020), ‘Guided
Adversarial Attack for Evaluating and
Enhancing Adversarial Defenses’

[88]: Sriramanan et al. (2021), ‘Towards
Efficient and Effective Adversarial Train-
ing’

then training the network on these adversarial examples instead of the
original samples. The adversarial samples are generally recomputed at
each training step to adapt to the current state of the network. A common
approach to compute the attack is Projected Gradient Descent (PGD)
[37], which iteratively perturbs the input sample with gradient steps,
each followed by projection onto the 𝜖-ball. Mathematically at step 𝑡 the
perturbation is computed as:

𝒙𝑡+1 = Π𝐵(𝒙 ,𝜖)
(
𝒙𝑡 + 𝛼 sign∇𝒙L

(
𝑓𝜃(𝒙𝑡), 𝑦

))
(2.9)

where Π𝐵(𝒙 ,𝜖) is the projection onto the 𝜖-ball centered at 𝒙, 𝛼 > 0 is the
step size controlling the magnitude of the perturbation and sign is the
sign function. At step 𝑡 = 0, the perturbation is initialized with random
uniform noise sampled from the 𝜖-ball: 𝒙0 = 𝒙+ 𝛿 ∼ U(𝐵(𝒙 , 𝜖)). PGD can
be implemented with multiple random restarts to increase the chances
of finding a successful adversarial perturbation: the attack is run several
times from different random initializations and the worst adversarial
example is kept.

Given an adversarial attack oracle 𝔸, we denote the adversarial sample of
(𝒙 , 𝑦) ∼ D as 𝒙𝑎𝑑𝑣,𝔸 and define the corresponding adversarial loss as:

Ladv(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) := L(𝑓𝜃(𝒙𝑎𝑑𝑣,𝔸), 𝑦). (2.10)

For any adversarial attack oracle A, we have Ladv(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) ≤
Lrob(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦).
Such attacks can fool standardly trained neural networks and are widely
used to train empirically robust networks. Empirically robust networks
are typically evaluated on stronger attacks than those used during
training. For instance, one might use PGD with many more steps and
multiple restarts. AutoAttack [79] is a strong suite of attacks that has
become the standard way to reliably evaluate empirical robustness.

Multi-step adversarial training incurs significant computational overhead,
as training cost increases linearly with the number of attack steps.

Remark 2.2.1 Robust Overfitting It
was noted that adversarial training is
prone to overfitting with respect to
empirical robustness, a phenomenon
known as robust overfitting [80],
with specialized remedies including
smoothing methods [81] and tech-
niques linked to a game-theoretical in-
terpretation of the phenomenon [82].
Robust overfitting is a different phe-
nomenon than catastrophic overfit-
ting and can occur with multi-step
adversarial training.

2.2.2 Single Step Adversarial Training and Catastrophic
Overfitting

A line of work has focused on designing effective single-step alterna-
tives [4, 6, 61]. Among them is Fast Gradient Sign Method (FGSM) [1],
which systematically lands on a corner of the perturbation space: 𝒙adv,FGSM =

𝒙 + 𝜖 sign
(
∇𝒙L(𝑓𝜃(𝒙), 𝑦)

)
. FGSM was the first to be shown to suffer

from catastrophic overfitting [6], a failure mode under which the net-
work’s robustness to PGD attacks rapidly drops to ≈ 0%. Understanding
and mitigating this phenomenon is an activate area of research [83–86].
Wong et al. [6] empirically demonstrate that catastrophic overfitting can
be prevented at moderate 𝜖 values by using a random uniform input
in 𝐵(𝒙 , 𝜖) as a FGSM starting point. This version of FGSM is known
as Random Start-FGSM (RS-FGSM). Other techniques include explicit
regularizers on the loss smoothness [87, 88], dynamically varying the
attack step size [89], or selectively zeroing some coordinates of the attack
step [90]. These are all outperformed by the noise-based N-FGSM: Jorge
et al. [4] propose to sample uniformly from a larger set than the target
model (typically, 𝐵(𝒙 , 2𝜖)), and by removing RS-FGSM’s projection onto
𝐵(𝒙 , 𝜖) after the step. The resulting attack, called Noisy-FGSM (N-FGSM),
achieves non-negligible PGD robustness at larger 𝜖 without incurring

2.2 Robustness of Neural Networks 17

2𝜖𝒙

𝒙FGSM

𝒙RS-FGSM
𝑟𝑎𝑛𝑑

𝒙RS
𝑟𝑎𝑛𝑑
+ 𝛿

𝒙RS-FGSM

𝒙PGD
𝑟𝑎𝑛𝑑

𝒙PGD
2𝑘𝜖

𝒙N-FGSM
𝑟𝑎𝑛𝑑

𝒙N-FGSM

Figure 2.1: Illustration of the adversar-
ial attacks discussed in this section. The
blue square is the ball 𝐵(𝒙 , 𝜖) considered
as the perturbation space. The initial ran-
dom perturbation is indicated with a
dashed-line. The gradient steps are in-
dicated with arrows. See Algorithm 2.1
for the pseudocode of RS-FGSM. FGSM
is obtained by removing the random ini-
tialization and setting 𝛼 = 𝜖. N-FGSM is
obtained by initializing from a random
point in 𝐵(𝒙 , 𝑘𝜖) with 𝑘 > 1 and omit-
ting the projection step (line 8). PGD is
obtained by iterating several times the
steps at lines 6-8 with a smaller step size
𝛼.

[89]: Kim et al. (2021), ‘Understanding
catastrophic overfitting in single-step ad-
versarial training’
[90]: Golgooni et al. (2023), ‘ZeroGrad:
Costless conscious remedies for catas-
trophic overfitting in the FGSM adver-
sarial training’

Listing 2.1: Pseudocode of the RS-FGSM
attack.

1 function RS-FGSM(𝒙, 𝜖, 𝛼, 𝑓𝜃)
2 Input: 𝒙, 𝜖, 𝛼, 𝑓𝜃
3 Output: 𝒙adv
4

5 𝒙adv ← 𝒙 +Uniform(−𝜖, 𝜖)
6 𝑔 ← ∇𝒙advL(𝑓𝜃(𝒙adv), 𝑦)
7 𝒙adv ← 𝒙adv + 𝛼 · sign(𝑔)
8 𝒙adv ←

min
(
max(𝒙adv , 𝒙 − 𝜖), 𝒙 + 𝜖

)
9

10 return 𝒙adv
11 end function

[91]: Ortiz-Jimenez et al. (2023), ‘Catas-
trophic overfitting can be induced with
discriminative non-robust features’
[5]: Andriushchenko and Flammarion

(2020), ‘Understanding and Improving
Fast Adversarial Training’
[7]: Rocamora et al. (2024), ‘Efficient

local linearity regularization to overcome
catastrophic overfitting’
[92]: Lin et al. (2023), ‘Eliminating catas-
trophic overfitting via abnormal adver-
sarial examples regularization’

additional cost relative to RS-FGSM, while also acting as an implicit loss
regularizer [4].

See Figure 2.1 for an illustration of the single-step attacks and the PGD
attack.

Regrettably, even N-FGSM suffers from catastrophic overfitting at larger
perturbation radii.

Better robustness at large 𝜖, albeit at additional cost, can be achieved by
promoting the local linearity of the network, which is closely-linked with
catastrophic overfitting [91]: GradAlign [5] aligns the input gradients of
clean and randomly perturbed samples, ELLE [7] by enforcing a simple
condition on two random samples from the perturbation set and their con-
vex combination. Recent alternatives to attain large-𝜖 robustness include
hindering the generation of adversarial examples with a larger loss than
the clean input [92], or the use of adaptive weight perturbations [93].

2.2.3 Certified Training and Verified Robustness

On the other hand, works inspired by the formal verification literature
have proposed to train neural networks by over-approximating the inner
maximization problem in Eq. (2.7), thereby obtaining a lower bound on
the loss that can be used to update the parameters 𝜃.

Formal verification aims to provide guarantees of local robustness as
defined in Eq. (2.6). Importantly, this notion is independent of any attack
heuristic.

Definition 2.2.3 (Certified Robustness) A network 𝑓𝜃 is said to be cer-
tifiably robust on an input sample (𝒙 , 𝑦) ∼ D if and only if the difference

between the ground-truth logit 𝑓𝜃(𝒙′)[𝑦] and every other logit is positive for

18 2 Background

[93]: Lin et al. (2024), ‘Layer-Aware Anal-
ysis of Catastrophic Overfitting: Reveal-
ing the Pseudo-Robust Shortcut Depen-
dency’

[94]: Sunaga (1958), ‘Theory of an inter-
val algebra and its application to numer-
ical analysis’

[95]: Moore (1966), Interval Analysis

[46]: Xu et al. (2020), ‘Automatic Per-
turbation Analysis for Scalable Certified
Robustness and Beyond’

In Example 2.2.1 we have

𝑾̃ 𝑛 = 𝑾 𝑛 ©­«
0 0 0
1 −1 0
1 0 −1

ª®¬
and 𝒃̃𝑛 = −𝒃𝑛 .

all 𝒙′ ∈ 𝐵(𝒙 , 𝜖):

min
𝑖

{
𝒛
𝐵(𝒙 ,𝜖),𝑦
𝑓𝜃

:= min
𝒙′∈𝐵(𝒙 ,𝜖)

[
𝒛 𝑓𝜃 (𝒙′, 𝑦) :=

(
𝑓𝜃(𝒙′)[𝑦]1 − 𝒇𝜃(𝒙′)

)]}
[𝑖] ≥ 0

(2.11)
where 𝒛 𝑓𝜃 (𝒙 , 𝑦) is the vector of differences between each logit and the ground-

truth logit.

This definition is equivalent to Eq. (2.6), but the formulation in terms of
logit differences is more common in the verification literature. The reason
for this will become clearer when we introduce verification methods.
Given optimal bounds on the logit difference 𝒛

𝐵(𝒙 ,𝜖),𝑦
𝑓𝜃

, we can define a
verified loss as:

Lver(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) := L
(
−𝒛𝐵(𝒙 ,𝜖),𝑦

𝑓𝜃
, 𝑦

)
. (2.12)

Example 2.2.1 (Logit Difference) For
a neural network 𝑓𝜃 with 3 classes,
consider the raw output logits

𝑓𝜃(𝒙) =
©­«
2.0
1.5
0.5

ª®¬ for an input 𝒙 with

ground-truth label 𝑦 = 0. The logit
difference is computed as:

𝒛 𝑓𝜃 (𝒙 , 𝑦) =
©­«
2.0 − 2.0
2.0 − 1.5
2.0 − 0.5

ª®¬ =
©­«
0.0
0.5
1.5

ª®¬ .

When L is a translation invariant loss function (which is the case for the
cross-entropy loss), the verified loss of Eq. (2.12) is equal to the robust
loss defined in Eq. (2.8):

Lver(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) = Lrob(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦). (2.13)

Of course computing the optimal adversarial perturbation and computing
the exact bound of the logit difference is equivalently intractable. Certified
training relaxes the problem by computing sound bounds of the logit
difference over the perturbation space of Eq. (2.11): z𝐵(𝒙 ,𝜖),𝑦

𝑓𝜃
≤ 𝒛

𝐵(𝒙 ,𝜖),𝑦
𝑓𝜃

.
Given a bounding algorithm that produces such bounds, we can define
an approximate verified loss as:

Remark 2.2.2 In order to use the
classical family of gradient descent
methods to train a model with such
a modified loss, the bounding algo-
rithm must be differentiable.

Lver(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) := L
(
−z𝐵(𝒙 ,𝜖),𝑦

𝑓𝜃
, 𝑦

)
(2.14)

For any adversarial attack oracle and any sound bounding algorithm, we
have:

Ladv(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) ≤ Lrob(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) ≤ Lver(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) (2.15)

2.2.4 A first approximation: Interval Bound Propagation

Interval Bound Propagation (IBP) is a method to over-approximate neural
network outputs based on the application of interval arithmetic [94, 95]
onto the functions composing the neural architecture. As such, it can
be easily applied onto general computational graphs [46]. For ease of
presentation, let us assume that 𝑓𝜃 is a 𝑛-layer feed-forward neural
network, with layer 𝑗 ∈ {1 . . . 𝑛 − 1} composed of an affine operation
followed by a monotonically increasing element-wise activation function
𝝈 such as ReLU, 𝒙 𝑗 = 𝝈

(
𝑾 𝑖𝒙 𝑗−1 + 𝒃𝑖

)
, and a final affine layer: 𝑓𝜃 =(

𝑾 𝑛𝒙𝑛−1 + 𝒃𝑛
)
. In this case, we can compose the logit differences and

the last layer into a single affine layer: 𝒛 𝑓𝜃 (𝒙 , 𝑦) =
(
𝑾̃ 𝑛𝒙𝑛−1 + 𝒃̃𝑛

)
.

Then, for perturbation 𝐵(𝒙0 , 𝜖), IBP computes z𝐵(𝒙 ,𝜖),𝑦
𝑓𝜃

through the fol-

lowing procedure, which iteratively derives lower and upper bounds 𝒍𝑘
and 𝒖̂𝑘 to the outputs of the 𝑘-th affine layer:

2.3 Hybrid Methods: state of the art in certified training 19

Figure 2.2: Illustration of the wrapping
effect of interval arithmetic. The initial
space is a product of two intervals (cyan
square). The cyan squares across pan-
els are the exact reachable sets after re-
peated 45-degree rotations. The orange
squares (enclosing boxes) are the over-
approximated reachable sets obtained
with interval arithmetic. The gray dashed
lines are the exact reachable sets obtained
by applying the rotation on the previ-
ous enclosing box. The wrapping effect
(the over-approximation of the box enclo-
sure) leads to a rapid explosion of the ap-
proximated reachable set. This is highly
related to the dependency problem, a
more general pitfall of interval analysis.
Consider a variable 𝑥 taking possible
values in an interval [0, 1]. Interval arith-
metic gives 𝑥 − 𝑥 ∈ [−1, 1], whereas an
abstraction that tracks variable relations
yields the exact result [0, 0].

3: The term comes from the field of
reachability analysis in dynamic systems
[96]. It is particularly striking for inter-
val analysis but any domain introduc-
ing over-approximations, wrapping more
than necessary, can suffer from it.
[97]: Fan and Li (2021), ‘Adversarial Train-
ing and Provable Robustness: A Tale of
Two Objectives’
[98]: Shi et al. (2021), ‘Fast Certified Ro-
bust Training with Short Warmup’
[99]: Gowal et al. (2018), ‘On the effec-

tiveness of interval bound propagation
for training verifiably robust models’

𝒍1 = 𝑾 1𝒙0 − 𝜖
��𝑾 1

�� 1 + 𝒃1

𝒖̂1 = 𝑾 1𝒙0 + 𝜖
��𝑾 1

�� 1 + 𝒃1

}
Initial bounds

𝒍 𝑗 = 1
2𝑾

𝑗
(
𝝈(𝒍 𝑗−1) + 𝝈(𝒖̂ 𝑗−1)

)
− 1

2 |𝑾 𝑗|
(
𝝈(𝒖̂ 𝑗−1) − 𝝈(𝒍 𝑗−1)

)
+ 𝒃 𝑗

𝒖̂ 𝑗 = 1
2𝑾

𝑗
(
𝝈(𝒍 𝑗−1) + 𝝈(𝒖̂ 𝑗−1)

)
+ 1

2 |𝑾 𝑗|
(
𝝈(𝒖̂ 𝑗−1) − 𝝈(𝒍 𝑗−1)

)
+ 𝒃 𝑗


∀ 𝑗 ∈ J2, 𝑛 − 1K

z𝐵(𝒙 ,𝜖),𝑦
𝑓𝜃

=
1
2
𝑾̃ 𝑛

(
𝒍𝑛−1 + 𝒖̂𝑛−1

)
− 1

2
|𝑾̃ 𝑛|

(
𝒖̂𝑛−1 − 𝒍𝑛−1

)
+ 𝒃̃𝑛

Final bounds
(2.16)

We will henceforth write 𝒍
𝐵(𝒙 ,𝜖),𝑦
𝑓𝜃

for the lower bounds to the logit
differences obtained through Eq. (2.16), and LIBP(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) :=
L

(
−𝒍𝐵(𝒙 ,𝜖),𝑦

𝑓𝜃
, 𝑦

)
for the associated loss.

IBP is computationally inexpensive, requiring only one additional for-
ward pass through the network, but suffers from bound explosion due to
the wrapping effect3. Training using IBP requires a special initialization
of the network weights [98] and a long schedule [99] with some epochs
of standard training (warm-up) followed by epochs slowly increasing the
perturbation budget 𝜖 (ramp-up) until final epochs of IBP training at the
target perturbation budget 𝜖.

2.3 Hybrid Methods: state of the art in certified
training

Networks trained via the IBP lossLIBP(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) can be easily verified
to be robust using the same bounds employed for training. However, the
relative looseness of the over-approximation from equation Eq. (2.16)
results in a significant decrease in standard performance. For ReLU
networks, the availability of more effective verifiers based on branch-
and-bound [41, 100, 101] post-training has motivated the development of
alternative techniques (see Section 3.5 for more details on branch-and-
bound approaches). A series of methods have shown that combination
of adversarial training with network over-approximations [97, 102–104]
can yield strong verifiability via branch-and-bound while reducing the
impact on standard performance.

2.3.1 SABR: Small Adversarial Bounding Regions

In particular, Müller et al. [105] proposed to compute the IBP loss over a
tunable subset of 𝐵(𝒙 , 𝜖) containing adversarial examples, yielding favor-
able trade-offs between standard performance and certified robustness
via branch-and-bound-based methods. The method is dubbed SABR

20 2 Background

[41]: Ferrari et al. (2022), ‘Complete Ver-
ification via Multi-Neuron Relaxation
Guided Branch-and-Bound’

[100]: Henriksen and Lomuscio (2021),
‘DEEPSPLIT: An Efficient Splitting
Method for Neural Network Verification
via Indirect Effect Analysis’

[101]: Wang et al. (2021), ‘Improving
Global Adversarial Robustness General-
ization With Adversarially Trained GAN’
[97]: Fan and Li (2021), ‘Adversarial

Training and Provable Robustness: A
Tale of Two Objectives’

[102]: Balunovic and Vechev (2020), ‘Ad-
versarial Training and Provable Defenses:
Bridging the Gap’

[103]: De Palma et al. (2022), ‘IBP Reg-
ularization for Verified Adversarial Ro-
bustness via Branch-and-Bound’

[104]: Mao et al. (2023), ‘TAPS: Connect-
ing Certified and Adversarial Training’
[105]: Müller et al. (2023), ‘Certified

Training: Small Boxes are All You Need’

𝒙adv

2𝜖

clipped

𝜆𝜖

Figure 2.3: SABR: the blue box represent
the perturbation space 𝐵(𝒙 , 𝜖) of the in-
put sample 𝒙. The red cross 𝒙adv is an
adversarial example, considered as cen-
ter for a new, smaller box to be used for
training, delimited by the red lines. This
box is clipped to the original perturba-
tion space.

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’

[106]: Caruana (1997), ‘Multitask Learn-
ing’

[107]: Zhang et al. (2020), ‘Towards Sta-
ble and Efficient Training of Verifiably
Robust Neural Networks’

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’

(Small Adversarial Bounding Regions). The subset used as initial bounds
for IBP is a ℓ∞-ball of center 𝒙adv, an adversarial example typically com-
puted by PGD, and of radius 𝜆𝜖 with 𝜆 ∈ [0, 1] a tunable parameter, as
schematized in Fig. 2.3.

2.3.2 Expressive Losses

De Palma et al. [8, Definition 3.1] introduced the notion of loss expres-
sivity, defined as the ability of a loss function to spawn a continuous
range of trade-offs between the adversarial and the IBP losses, showing
that expressive losses obtained through convex combinations between an
adversarial and an over-approximation component lead to state-of-the-art
certified robustness.

Definition 2.3.1 (Expressive losses) Given a bounding algorithm and an

adversarial attack generator a parametrized family of loss functions L𝛼 is said

to be expressive if:

▶ Ladv(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) ≤ L𝛼(𝑓𝜃(𝒙); 𝑦) ≤ Lver(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) for all

𝛼 ∈ [0, 1].
▶ L𝛼(𝑓𝜃(𝒙); 𝑦) is continuous and monotonically increasing with respect

to 𝛼 ∈ [0, 1].
▶ L0(𝑓𝜃(𝒙); 𝑦) = Ladv(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦)
▶ L1(𝑓𝜃(𝒙); 𝑦) = Lver(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦).

De Palma et al. [8] introduce several ways to combine the adversarial loss
and the IBP loss to obtain expressive losses using convex combinations.

Example 2.3.1 (Convex combinations) The Multi-Task Learning IBP
(MTL-IBP) loss is defined as the convex combination of the adversarial
loss and the IBP loss:

L𝛼,𝑀𝑇𝐿−𝐼𝐵𝑃 := (1 − 𝛼) · Ladv(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) + 𝛼 · LIBP(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦)
(2.17)

The convex combination can also be made in the logarithmic space:

L𝛼,𝐸𝑋𝑃𝐼𝐵𝑃 := Ladv(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦)1−𝛼 · LIBP(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦)𝛼 . (2.18)

The combination can also be done between the logit differences on
the adversarial input on one hand, and the lower bound of the logit
differences on the clean input on the other hand:

L𝛼,𝐶𝐶−𝐼𝐵𝑃 := L
(
−

[
(1 − 𝛼) · 𝒛 𝑓𝜃 (𝒙adv , 𝑦) + 𝛼 · z 𝑓𝜃 (𝒙 , 𝑦)

]
; 𝑦

)
(2.19)

The formulation of MTL-IBP stems from multi-task learning [106]. Here
the two tasks are the minimization of the adversarial loss and the IBP
loss. CC-IBP on the other hand is inspired by a previous work [107] on
efficient and precise certified training, which does a convex combination
of the IBP bounds and CROWN-IBP bounds inside the loss (we describe
CROWN-IBP in Section 2.4.2). Finally, Exp-IBP was first introduced to
solidify the claim that expressiveness is a key property of losses for
certified training [8]. Its reduced sensitivity to the changes of 𝛼 can be
interesting when tuning it as we will see in Chapter 4.

The hybrid use of adversarial training and certified training has been
shown to yield state-of-the-art results when evaluated with verification

2.3 Hybrid Methods: state of the art in certified training 21

Table 2.1: Comparison of the expressive losses from with literature results for ℓ∞ norm perturbations on CIFAR-10, TinyImageNet and
downscaled (64 × 64) ImageNet. The entries corresponding to the best standard or verified robust accuracy for each perturbation radius
are highlighted in bold.

Dataset 𝜖 Method Source Standard acc. [%] Verified rob. acc. [%]

CIFAR-10

2
255

CC-IBP De Palma et al. [8] 80.09 63.78
MTL-IBP De Palma et al. [8] 80.11 63.24
Exp-IBP De Palma et al. [8] 80.61 61.65
STAPS Mao et al. [104] 79.76 62.98
SABR Mao et al. [109] 79.89 63.28

SortNet Zhang et al. [108] 67.72 56.94
IBP-R Mao et al. [109] 80.46 62.03
IBP Mao et al. [109] 68.06 56.18

AdvIBP Fan and Li [97] 59.39 48.34
CROWN-IBP Zhang et al. [107] 71.52 53.97

COLT Balunovic and Vechev [102] 78.4 60.5

8
255

CC-IBP De Palma et al. [8] 53.71 35.27
MTL-IBP De Palma et al. [8] 53.35 35.44
Exp-IBP De Palma et al. [8] 53.97 35.04
STAPS Mao et al. [104] 52.82 34.65
SABR Müller et al. [105] 52.38 35.13

SortNet Zhang et al. [108] 54.84 40.39
IBP-R De Palma et al. [103] 52.74 27.55
IBP Shi et al. [98] 48.94 34.97

AdvIBP Fan and Li [97] 47.14 33.43
CROWN-IBP Xu et al. [46] 46.29 33.38

COLT Balunovic and Vechev [102] 51.70 27.50

TinyImageNet 1
255

CC-IBP De Palma et al. [8] 38.61 26.39
MTL-IBP De Palma et al. [8] 37.56 26.09
Exp-IBP De Palma et al. [8] 38.71 26.18
STAPS Mao et al. [104] 28.98 22.16
SABR Mao et al. [109] 28.97 21.36

SortNet Zhang et al. [108] 25.69 18.18
IBP Mao et al. [109] 25.40 19.92

CROWN-IBP Shi et al. [98] 25.62 17.93

ImageNet64 1
255

CC-IBP De Palma et al. [8] 19.62 11.87
MTL-IBP De Palma et al. [8] 20.15 12.13
Exp-IBP De Palma et al. [8] 22.73 13.30
SortNet Zhang et al. [108] 14.79 9.54

CROWN-IBP Xu et al. [46] 16.23 8.73
IBP Gowal et al. [99] 15.96 6.13

For more details on the methods and
the results of Table 2.1 we refer to De
Palma et al. [8]. Briefly: AdvIBP [97],
CROWN-IBP [107], COLT [102], IBP-R
[103], STAPS [104] all relies in some way
on approximating the network output
bounds (using IBP or tighter convex re-
laxation), while SortNet [108] is a spe-
cial architecture: a 1-Lipschitz neural net-
work, providing guarantees of robust-
ness thanks to the low Lipschitz constant
of the network.
[97]: Fan and Li (2021), ‘Adversarial Train-
ing and Provable Robustness: A Tale of
Two Objectives’
[107]: Zhang et al. (2020), ‘Towards Sta-
ble and Efficient Training of Verifiably
Robust Neural Networks’
[102]: Balunovic and Vechev (2020), ‘Ad-
versarial Training and Provable Defenses:
Bridging the Gap’
[103]: De Palma et al. (2022), ‘IBP Reg-
ularization for Verified Adversarial Ro-
bustness via Branch-and-Bound’

methods. We report the results on several image classification datasets
as shown in De Palma et al. [8] in Table 2.1.

22 2 Background

[104]: Mao et al. (2023), ‘TAPS: Connect-
ing Certified and Adversarial Training’

4: The vectors 𝒙𝑘 are typically called in-
termediate or latent features for hidden
layers 𝑘 < 𝐿.

2.4 Bound Propagation: over-approximating
neural networks

As described in Section 2.2.4 a first way to compute an over-approximation
of neural networks bounds is to use interval arithmetics to propagate
bounds in the network, commonly referred to as Interval Bound Propaga-
tion (IBP). While the method remains popular for training networks and
verifying networks trained with IBP, the imprecision of the bounds when
applied to networks trained in a standard way makes it impractical for
verification. We describe the general framework of linear approximation
algorithms offering tighter bounds at a higher computational cost. They
all share the idea of keeping track of the relations between the variables
(the inputs and the intermediate nodes) of the networks.

2.4.1 Neural Networks as computational graphs

While we have until now considered neural networks as sequence of
matrix multiplication and applications of activation functions, we can
also represent them as graphs. We represent such a network in Figure
2.4.

Figure 2.4: A simple neural network with
2 hidden layers, input of dimension 2 and
a single output. Following the notations
of Example 2.1.1, the weight matrices

are:
{(
−4 −1
−1 2

)
,

(
4 −2
−4 −1

)
,
(
3 3

)}
,

the biases are omitted for clarity. The
input is represented in green, the hidden
layers in blue and the output in red.We
decouple the application of the linear
function from the activation function,
deviating from the common graph rep-
resentation to better illustrate how non-
linearities are handled when approximat-
ing the reachable space of a network. The
nodes immediately before the activation
functions are called Pre-Activation nodes
(or Pre-ReLU in the case of ReLU activa-
tions).

𝑥0

𝑥1

𝑥2

𝑥3

-4
-1

-1

2

𝑥4
ReLU(𝑥2)

𝑥5
ReLU(𝑥3)

𝑥6

𝑥7

4
-4

-2

-1

𝑥8
ReLU(𝑥6)

𝑥9
ReLU(𝑥7)

𝑥10

3

3

In the following we consider a neural network 𝑓𝜃 with a total of 𝑁 nodes,
and 𝐿 layers as defined in Eq. (2.1). We consider a simple sequential
neural network that can be decomposed as:

𝑓𝜃(𝒙) =
(
𝑓𝐿 ◦ 𝑓𝐿−1 ◦ · · · ◦ 𝑓2 ◦ 𝑓1

)
(𝒙).

for a layer 𝑘 ∈ J𝑙K we note 𝑓𝜃
𝑘 the function that computes the output

values of the layer 𝑘 when applied to the inputs and denote its output
𝒙𝑘4:

𝒙𝑘 = 𝑓𝜃
𝑘(𝒙) =

(
𝑓𝑘 ◦ 𝑓𝑘−1 · · · ◦ 𝑓1

)
(𝒙).

We note I𝑘 the set of indices of the nodes of 𝑓𝜃 at layer 𝑘, with I0 =

{0, . . . , 𝑛0 − 1} for a network with input dimension 𝑛0.

2.4 Bound Propagation: over-approximating neural networks 23

5: In the case of local robustness, X is
an epsilon ball 𝐵(𝒙 , 𝜖) and S is the set of
logit vectors such that 𝒛 𝑓𝜃 (𝒙 , 𝑦) ≥ 0 for
the target class 𝑦.

[40]: Singh et al. (2019), ‘An Abstract
Domain for Certifying Neural Networks’

2.4.2 Linear Approximations for Neural Network
Verification

The over-approximation of the reachable space is one of the most effective
ways to overcome the scalability problem of verifying neural networks.
The goal is to compute a conservative over-approximation of the reachable
space, such that any concrete behavior is necessarily included in the
approximation.

More formally, we note 𝑓𝜃(X) :=
{
𝑓𝜃(𝒙), 𝒙 ∈ X

}
the exact reachable

space of a neural network 𝑓𝜃, and S a safe subset of the output space of
𝑓𝜃

5. Approximating the reachable space is done by computing a set O♯
𝑘

that over-approximates the reachable set of the network at layer 𝑘 for
every layer of the network: 𝑓𝜃 𝑘(X) ⊂ O♯

𝑘
. At the output layer we then

have 𝑓𝜃𝐿(X) = 𝑓𝜃(X) ⊂ O♯
𝐿
. Checking that the network is safe can then

be done by checking that O♯
𝐿
⊂ S . When the approximation is too loose

(where both S ∩O♯
𝐿

and S 𝑐 ∩O♯
𝐿
) it may be impossible to conclude, hence

the importance of computing tight approximations.

We have in fact already described such an over-approximation in Eq. (2.16),
where the reachable space is approximated by a box O♯

𝑘
=

∏
𝑖∈I𝑘 [𝑙𝑖 , 𝑢𝑖]

for each layer 𝑘 in the network using interval arithmetics. However, the
computed bounds are typically too loose to prove properties of interest,
particularly for networks not trained with certified training.

We now describe the general framework of linear approximations to
compute tighter bounds by retaining (possibly approximated) linear
relations between the nodes of the network.

The key idea is to approximate the behavior of the activation functions
with a linear approximation. Starting with the inputs, concrete bounds
and symbolic relations are computed and propagated through the layers
of the network to obtain bounds on each output, which can be used to
check whether the property of interest holds.

We explain this approach following the bound propagation perspective
of Singh et al. [40]. Let 𝑥𝑖 be a node in the network at a layer 𝑘 (𝑖 ∈ I𝑘),
the goal is to compute and propagate the following:

𝑥𝑖 ≤ 𝑏𝑢 +
∑
𝑗<𝑖

𝜆𝑢𝑗 𝑥 𝑗

𝑥𝑖 ≥ 𝑏 𝑙 +
∑
𝑗<𝑖

𝜆𝑙𝑗𝑥 𝑗

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖

where 𝑙𝑖 , 𝑢𝑖 ∈ ℝ are concrete bounds on 𝑥𝑖 , 𝜆𝑢𝑗 , 𝑏
𝑢 ∈ ℝ are coefficients

representing the upper symbolic relations of 𝑥𝑖 with regards to previous
nodes, and 𝜆𝑙

𝑗
, 𝑏 𝑙 ∈ ℝ the lower symbolic relations. For simplicity, we

denote the upper symbolic relations of a node 𝑥𝑖 as 𝑥𝑖 = 𝑏𝑢 + ∑
𝑗<𝑖

𝜆𝑢
𝑗
𝑥 𝑗

and the lower symbolic relations as 𝑥𝑖 = 𝑏 𝑙 +
∑
𝑗<𝑖

𝜆𝑙
𝑗
𝑥 𝑗 .

24 2 Background

[58]: Wang et al. (2018), ‘Formal Secu-
rity Analysis of Neural Networks Using
Symbolic Intervals’
[110]: Li et al. (2019), ‘Analyzing Deep

Neural Networks with Symbolic Prop-
agation: Towards Higher Precision and
Faster Verification’

Remark 2.4.1 (Soundness) Let 𝑥 𝑗 , 𝑗 ∈ J𝑛K be a node in the network,
and 𝑙 𝑗 , 𝑢𝑗 its concrete bounds. Let 𝑘 ∈ J𝑙K be the layer where 𝑥 𝑗 is
in the network, 𝑛𝑘 be the output dimension of 𝑓𝜃 𝑘 and 𝑚 ∈ J𝑛𝑘K be
the index of the output node 𝑥 𝑗 . Let 𝒙 be an input sample and I be
the input space of the network defined by a safety property (e.g. an
ℓ∞ ball around 𝒙). We say that an analysis maintaining such bounds
and symbolic relations is sound if for any node 𝑥 𝑗 in the network, the
following holds:

∀𝒙′ ∈ I , 𝑙 𝑗 ≤ 𝑓𝜃
𝑘(𝒙′)[𝑚] ≤ 𝑢𝑗 . (2.20)

Propagating the bounds and symbolic relations

At the first hidden layer 𝑘 = 1 the lower and upper symbolic relations are
initialized with the layer weights and biases while the concrete bounds
are initialized multiplying the input bounds with the weights and adding
the biases following classical interval arithmetics.

For subsequent linear layers, propagating the symbolic relations is
straightforward. The new upper symbolic relations are computed by
multiplying the previous upper symbolic relations with the positive
part of the weights and the previous lower symbolic relations with
the negative part of the weights. The new lower symbolic relations are
computed analogously.

For non-linear functions different techniques can be employed. We
highlight the specific treatment of the ReLU activation function.

Definition 2.4.1 Let 𝑥𝑖 be a pre-ReLU node with bounds 𝑙𝑖 , 𝑢𝑖 . The ReLU

activation can be categorized in three cases:

1. Always deactivated: if 𝑢𝑖 ≤ 0, then the ReLU is always deactivated.

2. Always activated: if 𝑙𝑖 > 0, then the ReLU is always activated.

3. Uncertain or unstable: if 𝑙𝑖 < 0 < 𝑢𝑗 there is no guarantee that the

ReLU is always activated or always deactivated.

When the ReLU activation status is stable the propagation is straightfor-
ward:

▶ If the ReLU is always deactivated, then the output is a constant
zero function, symbolic relations are dropped and both concrete
bounds are set to zero.

▶ If the ReLU is always activated, then it is treated as the identity
function, the symbolic relations are kept and the concrete bounds
are set to the pre-ReLU bounds.

In the uncertain case different linear approximations can be used.

We illustrate the main ones in the single-variable case in Figure 2.5. In
Figure 2.5a the relations are dropped, and a new fresh symbol is created
and used in subsequent operations. In this case, relations with regard
to inputs can be lost, but introducing fresh symbols allows for some
tightening of the bounds in subsequent operations. This is the technique
at the heart of the tool ReluVal [58] and further described in [110]. It is
commonly referred to as Symbolic Interval Propagation.

In Figure 2.5b a parallel linear approximation is used. A slope 𝜆 is
introduced and used in both the update of the lower and upper symbolic

2.4 Bound Propagation: over-approximating neural networks 25

𝑥 𝑗 = 𝑢𝑖

𝑙𝑖 𝑢𝑖

𝑥𝑖

𝑥 𝑗

(a) Simple box approximation

𝑥 𝑗
=
𝜆
′ · 𝑥 𝑖
+ 𝜇
′

𝑥 𝑗
=
𝜆
′ · 𝑥 𝑖

𝑙𝑖 𝑢𝑖

𝑥𝑖

𝑥 𝑗

(b) Parallel Linear Relaxation

𝑥 𝑗
=
𝑥 𝑖

𝑙𝑖 𝑢𝑖

𝑥 𝑗
=
𝜆 ·
𝑥 𝑖
+ 𝜇

𝑥𝑖

𝑥 𝑗

(c) Approximation if 𝑢𝑖 ≤ −𝑙𝑖

𝑥 𝑗
=
𝑥 𝑖

𝑙𝑖 𝑢𝑖

𝑥 𝑗
=
𝜆 ·
𝑥 𝑖
+ 𝜇

𝑥𝑖

𝑥 𝑗

(d) Approximation if 𝑢𝑖 > −𝑙𝑖 Figure 2.5: Linear approximations of the
ReLU function

[39]: Singh et al. (2018), ‘Fast and Effec-
tive Robustness Certification’

[42]: Wong and Kolter (2018), ‘Provable
defenses against adversarial examples
via the convex outer adversarial poly-
tope’

[43]: Weng et al. (2018), ‘Towards fast
computation of certified robustness for
ReLU networks’

[111]: Wang et al. (2018), ‘Efficient Formal
Safety Analysis of Neural Networks’
[40]: Singh et al. (2019), ‘An Abstract

Domain for Certifying Neural Networks’
[45]: Zhang et al. (2018), ‘Efficient Neural
Network Robustness Certification with
General Activation Functions’
[112]: Singh et al. (2019), ‘Boosting Ro-

bustness Certification of Neural Net-
works’

[107]: Zhang et al. (2020), ‘Towards Sta-
ble and Efficient Training of Verifiably
Robust Neural Networks’

coefficients. We show here the approximation with 𝜆 =
𝑢𝑖

𝑢𝑖 − 𝑙𝑖
, which is

the common choice in the literature [39, 42, 43, 111]. But any 𝜆 such that
0 ≤ 𝜆 ≤ 1 can be used and will yield a sound approximation.

Finally, one can also use a different slope for the lower and upper symbolic
relations, as done in Singh et al. [40] (the method is called DeepPoly)
and Zhang et al. [45] (the method is called CROWN). The upper slope is
typically chosen as 𝜆𝑢 =

𝑢𝑖

𝑢𝑖 − 𝑙𝑖
, as in the parallel linear approximation,

while the lower slope is chosen heuristically to minimize the area of the
over-approximation (the gray area in Figure 2.5), with the choices of
𝜆𝑙 = 0 if 𝑢𝑖 ≤ −𝑙𝑖 (Figure 2.5c) and 𝜆𝑙 = 1 if 𝑙𝑖 ≥ 0 (Figure 2.5d).

Here again any choice of slope 𝜆𝑙 such that 0 ≤ 𝜆𝑙 ≤ 1 is sound. While
there is no theoretical guarantee providing the slope leading to the
tightest output bounds, the heuristics of Singh et al. [112] and Zhang et al.
[45], minimizing the area of the over-approximation, have been shown
to yield good bounds in practice. Optimal slopes can also be learned, as
discussed in paragraph Optimizing the slopes.

Backsubstitution The symbolic relations can be maintained as to relate
directly to the inputs at every step of the bound propagation procedure,
using the input relations of the previous layer. However, this prevents
further tightening of the bounds due to possible intermediate simplifica-
tions. To obtain the tightest possible bounds, a procedure that recursively
substitutes relations between consecutive layers, going through all previous

layers for each intermediate layer, is used in Singh et al. [40], Wong and
Kolter [42], Weng et al. [43], and Zhang et al. [45]. Singh et al. [40]
calls it backsubstitution and Zhang et al. [45] calls it backward mode.
The forward mode described in Zhang et al. [45] amounts to directly
updating relations to inputs in a single forward pass using the rules
described above. While the backsubstitution procedure yields better
bounds it requires a quadratic number of backward passes. Zhang et al.
[107] propose a tradeoff with CROWN-IBP: computing intermediate

26 2 Background

Figure 2.6: Linear approximation of the
Sigmoid function

𝑥 𝑗 ≤
𝛼
𝑢
𝑗
· 𝑥 𝑖 +

𝑏
𝑢

𝑥 𝑗 ≥ 𝛼
𝑙
𝑗
· 𝑥 𝑖 +

𝑏
𝑙

𝑙𝑖 𝑢𝑖

𝑥𝑖

𝑥 𝑗

𝜎(𝑥)

[39]: Singh et al. (2018), ‘Fast and Effec-
tive Robustness Certification’
[38]: Gehr et al. (2018), ‘AI2: Safety and
Robustness Certification of Neural Net-
works with Abstract Interpretation’
[113]: Girard (2005), ‘Reachability of Un-
certain Linear Systems Using Zonotopes’

[114]: Ghorbal et al. (2009), ‘The Zono-
tope Abstract Domain Taylor1+’
6: In the case of local robustness this
amounts to using the logit difference de-
fined in Eq. (2.11). One can use a final
linear layer with weights𝑊 ∈ ℝ𝐾×𝐾 for
𝐾 classes where the column correspond-
ing of the target class is filled with 1 and
the diagonal is filled with −1 except for
the row corresponding to the target class
which is filled with 0, as in Eq. (2.2.4).

[40]: Singh et al. (2019), ‘An Abstract
Domain for Certifying Neural Networks’
[42]: Wong and Kolter (2018), ‘Provable
defenses against adversarial examples
via the convex outer adversarial poly-
tope’

[45]: Zhang et al. (2018), ‘Efficient Neural
Network Robustness Certification with
General Activation Functions’
[115]: Salman et al. (2019), ‘A Convex

Relaxation Barrier to Tight Robustness
Verification of Neural Networks’
[116]: Li et al. (2020), ‘SoK: Certified

Robustness for Deep Neural Networks’

[43]: Weng et al. (2018), ‘Towards fast
computation of certified robustness for
ReLU networks’

7: The results are available at
https://sokcertifiedrobustness.
github.io/benchmark/. Some theoreti-
cally equivalent methods yield different
results when timeout is a factor, but
same results on the easiest instances.
[117]: Maas (2013), ‘Rectifier Nonlinear-
ities Improve Neural Network Acoustic
Models’

bounds with IBP and using those bounds for relaxing the non-linearities
when backsubstituting from the last layer to the first layer.

Note that Singh et al. [39], improving on Gehr et al. [38], uses a zonotope
representation [113, 114]. This allows to compute the same reachable space
as the parallel linear approximation, without the need to backsubstitute,
but requires introducing and tracking relations with new symbols for
every unstable ReLU nodes.

When the output set of interest involves affine comparisons between
outputs of the network a final refinement can be made. The specification
of the output space of interest can be treated as an additional final
layer and the bounds and symbolic relations can be further propagated
through this layer6.

Many of the linearization techniques were introduced in concurrent
works, inspired by different views (notably abstract interpretation [39, 40]
and optimization [42, 45]), leading to somewhat different presentations
and implementations of similar ideas. We refer to Salman et al. [115] for
a detailed discussion of the different linearization techniques and how
they relate to each other. Li et al. [116] systematically evaluates several
linearization techniques (along with other methods) and experimentally
shows the equivalence of DeepPoly [40] and CROWN [45] or Fast-Lin
[43] and WK [42]7.

General activation functions We focused on the ReLU activation func-
tion as it is widely used in practice and most early works focused on it.
Other piecewise linear activations, can be handled similarly, considering
the different cases where the linear relations can be propagated exactly,
or when a new approximation is needed. Such activations include Leaky
ReLU [117], PReLU [118], or ReLU6 [119]8. Other activation functions
such as Sigmoid or Tanh can also be linearly approximated with either
parallel or non-parallel linear approximations as shown in Figure 2.6.
Many different heuristics can be used to choose the slopes for those
approximations [39, 45, 56, 120–123].

2.4.3 Linear approximations and certified training

Note that linear approximations techniques are in general differentiable.
Implemented with a framework supporting automatic differentiation
(e.g. Auto_LiRPA [46], built with PyTorch [124]) the methods can be used
to train networks with verifiability goals as described in Section 2.2.3.

https://sokcertifiedrobustness.github.io/benchmark/
https://sokcertifiedrobustness.github.io/benchmark/

2.4 Bound Propagation: over-approximating neural networks 27

𝑥 𝑗
=
𝑥 𝑖

𝑙𝑖 𝑢𝑖

𝑥 𝑗
=
𝜆
· 𝑥 𝑖
+ 𝜇

𝑥𝑖

𝑥 𝑗

Figure 2.7: Optimal convex approxima-
tion

[118]: He et al. (2015), ‘Delving deep
into rectifiers: Surpassing human-level
performance on imagenet classification’
[119]: Krizhevsky (2010), ‘Convolutional
deep belief networks on cifar-10’
8: All are variants of ReLU. Leaky ReLU
uses a small positive slope for negative
inputs. Parametric ReLU (PReLU) uses
the same idea but makes it a tunable
parameter. ReLU6 clips positive inputs
to 6.

[56]: Wu et al. (2022), ‘Toward Certified
Robustness Against Real-World Distribu-
tion Shifts’

[120]: Henriksen and Lomuscio (2020),
‘Efficient Neural Network Verification via
Adaptive Refinement and Adversarial
Search’

[121]: Zhang et al. (2022), ‘Provably Tight-
est Linear Approximation for Robustness
Verification of Sigmoid-like Neural Net-
works’

[122]: Zhang et al. (2024), ‘GaLileo: Gen-
eral Linear Relaxation Framework for
Tightening Robustness Certification of
Transformers’

[123]: Shi et al. (2025), ‘Neural Network
Verification with Branch-and-Bound for
General Nonlinearities’
[46]: Xu et al. (2020), ‘Automatic Per-

turbation Analysis for Scalable Certified
Robustness and Beyond’
[124]: Paszke et al. (2019), ‘PyTorch:

An Imperative Style, High-Performance
Deep Learning Library’

[125]: Jovanović et al. (2022), ‘On the
Paradox of Certified Training’

[126]: Elboher et al. (2019), ‘An
Abstraction-Based Framework for Neu-
ral Network Verification’

[127]: Kochdumper et al. (2023), ‘Open-
and closed-loop neural network verifica-
tion using polynomial zonotopes’
[57]: Mazzucato and Urban (2021), ‘Re-
duced Products of Abstract Domains
for Fairness Certification of Neural Net-
works’

In fact, it is the purpose of the first introduction of the parallel linear
approximation in Wong and Kolter [42].

However, tighter bounds do not necessarily lead to better certified model.
IBP, especially combined with adversarial training, remains the leading
bound propagation method used for training as shown in Table 2.1.
Jovanović et al. [125] argues that two properties, met by IBP, continuity
and sensitivity, are keys for well-behaved certified training dynamics.
They show that the linear approximations methods do not satisfy either
one or both of these properties, thus leading to problems in the training
process.

2.4.4 Beyond linear approximations

We now briefly describe some variations of the linear approximations
described above.

Tighter approximations It is possible to use tighter approximations by
using more than one upper or lower symbolic relations per node. For
instance for the ReLU functions the optimal relaxation (minimizing the
area of the over-approximation) is the triangle relaxation [126], using
two lower symbolic relations representing the convex hull of the graph
of the ReLU function as shown in Figure 2.7. The relaxation is typically
used to formulate the bounding problem as a Linear Program (LP) or a
Mixed Integer Linear Program (MILP). We defer the discussion of such
methods in Section 3.5.

Another approach is to use quadratic [45] or polynomial approximations
[127]. However, computing bounds using such approximation is typi-
cally quite expensive, and the methods are limited to small networks,
particularly in the context of networks used within a cyber-physical
system where polynomial relations are used to model the dynamics of
the system.

Combining linear approximations There is no theoretical guarantees
showing an approximation to produce always tighter bounds than
another. In practice even for the same network one method might yield
better bounds for a node than another. Mazzucato and Urban [57]
propose to use jointly different linear approximations, referred to as
abstract domains, taking the best bounds at every step of the analysis9.

28 2 Background

9: The method is used to verify fairness
properties of neural networks and not
safety properties. We briefly describe the
approach in Section 3.4.4.
[128]: Xu et al. (2021), ‘Fast and Complete:
Enabling Complete Neural Network Ver-
ification with Rapid and Massively Par-
allel Incomplete Verifiers’
10: The 𝛼 denotes the slopes in their pa-
per.

Optimizing the slopes Rather than choosing fixed slopes heuristically
Xu et al. [128] propose to optimize them in a method called 𝛼-CROWN10.
The differentiable nature of the linear approximations makes it possible
to use gradient methods to find approximate solutions within a given
number of iterations, maintaining sound bounds at every step. The
additional cost scales linearly with the number of iterations. While
there is no convergence guarantees to the optimal slopes, Xu et al. [128]
show experimentally that the method improves bounds significantly,
sometimes yielding better bounds than the ones obtained by solving the
LP problem of the triangle relaxation.

Tightening Bounds for Incomplete
Verification

[59]: Lemesle et al. (2024), ‘Neural Net-
work Verification with PyRAT’
[58]: Wang et al. (2018), ‘Formal Secu-

rity Analysis of Neural Networks Using
Symbolic Intervals’
[57]: Mazzucato and Urban (2021), ‘Re-
duced Products of Abstract Domains
for Fairness Certification of Neural Net-
works’
[129]: Durand et al. (2022), ‘ReCIPH:

Relational Coefficients for Input Parti-
tioning Heuristic’
1: We refer for instance to the table 6
in appendix G.3 of De Palma et al. [8]
for a comparison of branch and bound,
CROWN with IBP used for intermediate
bounds and IBP only for assessing the
verified accuracy of models trained with
expressive losses. On CIFAR-10 with a tar-
get 𝜖 = 8/255 IBP and CROWN-IBP yield
identical results, and BaB only improves
about 1-2 percentage point (from 34%
to 35% verified accuracy). On TinyIma-
geNet with a target 𝜖 = 1/255, CROWN-
IBP (23%) greatly improves the results
of IBP (< 1%) and is about 3 percentage
points behind BaB (26%).
[130]: Julian et al. (2016), ‘Policy com-

pression for aircraft collision avoidance
systems’

An input partitioning heuristic
for the verification of neural

networks 3
3.1 Context and Motivation . 31
3.1.1 Input Partitioning 31
3.1.2 Binary Partitioning Trees 32
3.2 Heuristics for input

partitioning 33
3.2.1 Random choice 33
3.2.2 Biggest interval first 33
3.2.3 Gradient Smears 33
3.3 ReCIPH: Relational Co-

efficient for an Input
Partitioning Heuristic . . 34

3.3.1 Formalism 34
3.3.2 ReCIPH score 34
3.4 Experimental results . . . 35
3.4.1 PyRAT on ACAS bench-

mark 35
3.4.2 Overhead of Gradient

Smear and ReCIPH 36
3.4.3 PyRAT on Mooring lines

monitoring neural network 37
3.4.4 Libra on a fairness bench-

mark 38
3.4.5 VNN-COMP Results . . . 39
3.5 Related Work 40
3.6 Conclusion 42

In this chapter we present a heuristic to accelerate the partitioning of the
input space of a neural network, allowing efficient verification of neural
networks with low-dimensional inputs. The heuristic is coined ReCIPH
(Relational Coefficient for an Input Partitioning Heuristic), implemented in
the Python Reachability Assessment Tool (PyRAT) [59]. We show that
the heuristic outperforms the natural baseline of choosing the widest
interval to split on, and the gradient smear heuristic [58]. We also show
the use of ReCIPH beyond safety properties: it also helps in the context
of fairness verification, where the input partitioning is used to certify
fairness properties of neural networks [57]. This work [129] was presented
as a poster at the First Workshop on Formal Verification and Machine
Learning (WFVML 2022), organized in conjunction with ICML 2022.

3.1 Context and Motivation

We focus in this work on refining the bounds obtained with linearization
techniques described in Section 2.4.2.

Bound propagation and linearization techniques are powerful particularly
to analyze large neural networks, with high-dimensional inputs. In some
contexts, with networks trained with verifiability goals, verification
with the bounds obtained using only such techniques yields verification
results close to the results obtained with state-of-the-art branch and
bound techniques1.

However, bound propagation trades precision for scalability. This is
particularly problematic for networks with no robustness induced during
training. The problem is exacerbated when the perturbed input space is
large. In this case, even for small networks, the bounds obtained with
linearization techniques can be too loose to prove interesting properties.
For instance, the staple benchmark ACAS Xu, introduced in [130], is a set
of 45 networks each with 5 inputs and 6 hidden layers of 50 nodes. While
the networks are small, analysis using only linearization techniques fails
to prove the properties introduced in [131]. Several use cases in the latest
edition of International Verification of Neural Networks Competition
(VNN-COMP 2024) [60] comprise neural networks with less than 30
inputs.

3.1.1 Input Partitioning

For networks with low-dimensional inputs, a simple but powerful tech-
nique to overcome the limited precision of linearization techniques is
input space partitioning [58]. The subspaces of the partition are treated as
input spaces for new verification problems. This can be naturally imple-
mented in a parallelized manner. If the property holds on every subspace
of the partition, then the property holds for the original input space. It
has been shown in Wang et al. [58] that input partitioning combined with
symbolic interval propagation enables asymptotically complete analysis:
it is possible to compute an arbitrarily precise over-approximation of the

32 3 An input partitioning heuristic for the verification of neural networks

Figure 3.1: Symbolic interval analysis on
a toy network. The analysis on the full in-
put space gives an approximation of the
reachable output space of [0, 22] while
analyzing two subspaces by splitting one
input yields a tighter approximation of
[2, 20].

[4,6]

[1,3] 1

11

2

3
-1

[17, 27]

[3,5]

[11, 21]

[7, 11]
[5, 9]

[6, 20]
[2, 16]

[4,6]

[1,5]
1

11

2

3
-1

[5,11]

[11, 27]

[0,22]

[131]: Katz et al. (2017), ‘Reluplex: An
Efficient SMT Solver for Verifying Deep
Neural Networks’
[60]: Brix et al. (2024), ‘The fifth inter-

national verification of neural networks
competition (vnn-comp 2024): Summary
and results’
[58]: Wang et al. (2018), ‘Formal Secu-

rity Analysis of Neural Networks Using
Symbolic Intervals’

[112]: Singh et al. (2019), ‘Boosting Ro-
bustness Certification of Neural Net-
works’

reachable space by partitioning the input space into a finite number of
subspaces.

Remark 3.1.1 Note that the convergence of partitioning to the computa-
tion of the exact reachable set is not guaranteed for every linearization
technique. A condition for the theoretical convergence is inclusion
isotonicity [58]: if X ′ ⊂ X then 𝑓𝜃(X ′)𝕃 ⊂ 𝑓𝜃(X)𝕃 where 𝑓𝜃(X)𝕃 is
the over-approximation of the reachable space of 𝑓𝜃 applied to X
approximated with the linearization technique 𝕃. CROWN / DeepPoly
do not satisfy this property as seen in example However, in practice the
partitioning of the input space with CROWN / DeepPoly works well
and repetitive splits of the input space eventually yield more precise
bounds.

Minimizing the number of regions to analyze is important: even for
relatively small networks, it may be necessary to divide the input space
into thousands of subspaces. For instance, in Singh et al. [112], proving
property 9 of the ACAS Xu benchmark requires partitioning into 6300
regions. In this chapter, we focus on minimizing the number of regions
by choosing the best input to split at each partitioning step.

3.1.2 Binary Partitioning Trees

We can represent the partitioning with a tree where each node is a
subproblem to solve. When the analysis is inconclusive, an input is
chosen and bisected (split at its mid-point), leading to two children nodes.
We illustrate the impact of the choice of the input on a fictive toy case
with a 2-dimension input: 𝒙 ∈ [−2, 2] × [−0.5, 0.5] in Figure 3.2.

3.2 Heuristics for input partitioning 33

0

0

1

[−2,−1] × [−0.5, 0] [−2,−1] × [0, 0.5]

[−2,−1] × [−0.5, 0.5] [−1, 0] × [−0.5, 0.5]

[−2, 0] × [−0.5, 0.5] [0, 2] × [−0.5, 0.5]

(a) Splitting on 𝑥[0] first: 3 splits needed, 7 single passes in total.

1
[−2, 2] × [−0.5, 0] [−2, 2] × [0, 0.5]

(b) Splitting on 𝑥[1] first: 3 splits needed, 7 single passes in total.

Figure 3.2: Impact of the choice of the
input to split. We indicate the chosen
split dimension as a node label and the
new input space of the splitted variable
on the edges. Cyan indicate when the
subproblem is solved, orange when it
needs to be split further.

[132]: Corsi et al. (2020), ‘Evaluating the
Safety of Deep Reinforcement Learning
Models using Semi-Formal Verification’
[57]: Mazzucato and Urban (2021), ‘Re-
duced Products of Abstract Domains
for Fairness Certification of Neural Net-
works’

3.2 Heuristics for input partitioning

We now present two baselines, a heuristic from previous work, and our
heuristic ReCIPH for choosing which input to split at each partitioning
step.

3.2.1 Random choice

A simple heuristic is to choose randomly which input variable to split on.
This strategy is used in [132] in a semi-formal framework that estimates
output bounds through input sampling. It is also used in Libra [57], a
static analyzer for certifying fairness of neural networks. We show in
Section 3.4.4 the gains from using ReCIPH in this case. In our experiments,
the random choice does not work well and is significantly worse than
the following strategy.

3.2.2 Biggest interval first

Another simple heuristic is to choose the input with the biggest interval
to split on first. Intuitively, the larger the interval, the more influence the
input should have on the outputs. It requires no additional computation.
However, it does not take into account any information from the network
or the previous analyses.

3.2.3 Gradient Smears

In Wang et al. [58] another heuristic to choose the best split is proposed:
gradient intervals are computed using the bounds on the outputs and
the weights of the network. The final score is computed using the highest
upper bound of the gradient intervals, multiplied by the width of each
input. This heuristic relies on the intuition that the gradients are a good
approximation of the influence of the inputs on the outputs. It uses

34 3 An input partitioning heuristic for the verification of neural networks

2: a.k.a the symbolic lower and upper
bounds.

the weights of the network and the output bounds, but it requires an
additional backward pass to compute the gradients.

3.3 ReCIPH: Relational Coefficient for an Input
Partitioning Heuristic

We now describe in detail our heuristic, which relies on the relational
coefficients obtained at the end of an analysis using a linearization
technique

3.3.1 Formalism

For clarity we consider neural networks with a single output and the
safety property of checking the sign of the output of the network.

Let 𝑓𝜃 be a neural network with 𝑛 inputs and a single output, and
X ⊂ ℝ𝑛 be the input space of 𝑓𝜃. Let I = [𝑙0 , 𝑢0] × · · · × [𝑙𝑛−1 , 𝑢𝑛−1] be
a product of intervals such that I ⊂ ℝ𝑛 . We say that 𝑓𝜃 is safe on I if
𝑓𝜃(I) ≥ 0, i. e. the output of the network is non-negative for all inputs in
I. For a linearization 𝕃, we write Λ𝕃 ∈ ℝ𝑛 , 𝑏 ∈ ℝ and Λ𝕃 ∈ ℝ𝑛 ,𝑏 ∈ ℝ
the coefficient vectors and bias obtained by the analysis of the network
𝑓𝜃 on I using the linear approximation 𝕃2. Using sound linearizations
as described, we have:

∀𝒙 ∈ I ,Λ𝕃 · 𝒙 + 𝑏 ≤ 𝑓𝜃(𝒙) ≤ Λ𝕃 · 𝒙 + 𝑏 (3.1)

with the over-approximation of the reachable set of 𝑓𝜃 applied to I using
the linearization technique 𝕃.

3.3.2 ReCIPH score

Definition 3.3.1 (ReCIPH score) We define the ReCIPH score of an

input variable 𝑥𝑖 , denoted as 𝜌 (𝑥𝑖), ad the magnitude of the corresponding

coefficient in the linearization weighted by the width of the input interval:

𝜌 (𝑥𝑖) = (𝑢𝑖 − 𝑙𝑖) ·
|Λ𝕃[𝑖] +Λ𝕃[𝑖]|

2
. (3.2)

The choice of the interval to bisect is then the one with the highest ReCIPH

score:

split axis = argmax
𝑖∈[0,𝑛−1]

𝜌 (𝑥𝑖) (3.3)

Intuitively, the coefficients approximate the influence of each input on
the output. We weight the magnitude of the final coefficients by the input
intervals to account for large disparities between input intervals that
could arise from the original specification or from repetitive splits on the
same interval. If the model is locally linear, the coefficients are exactly
the gradients of the output with respect to the inputs.

Remark 3.3.1 (Extension to multiple outputs) We propose the following
heuristic in the case of multiple outputs:

3.4 Experimental results 35

[59]: Lemesle et al. (2024), ‘Neural Net-
work Verification with PyRAT’
[112]: Singh et al. (2019), ‘Boosting Ro-

bustness Certification of Neural Net-
works’
[39]: Singh et al. (2018), ‘Fast and Effec-
tive Robustness Certification’
4: https://github.com/eth-sri/
eran

[130]: Julian et al. (2016), ‘Policy com-
pression for aircraft collision avoidance
systems’
[133]: Julian et al. (2019), ‘Deep neural

network compression for aircraft colli-
sion avoidance systems’
[131]: Katz et al. (2017), ‘Reluplex: An

Efficient SMT Solver for Verifying Deep
Neural Networks’
5: For instance property 𝜙3 states that
if the intruder is directly ahead and is
moving toward the ownship, the score
for COC will not be minimal. e. g. the
network will not advise COC.

(a) ACAS Xu network

(b) ACAS Xu inputs

Figure 3.3: The ACAS Xu networks and
its inputs. Credit for both figures: [133].

6: 3 networks do not verify properties
3 and 4. Properties 5, 9 and 10 are only
defined for one network in Katz et al.
[134]

▶ the property involves a conjunction of comparisons3 3: This is the case for local robustness
assessed on the logits difference: we want
to check that every output is positive.

: we simply
consider the average ReCIPH score over all outputs and choose
the input with the highest average score.

▶ the property involves a disjunction of comparisons, e.g. proving
that at least one output is positive: we first use the output bounds
to determine which output is the closest to being positive, and
then use the ReCIPH scores of that output only.

This assumes that the property holds and thus that we either need to
prove all output inequalities (for conjunctions), or that we need to prove
one output inequality (for disjunctions). If the property is assumed
falsifiable, the heuristic should be swapped: only one inequality needs
to be violated to falsify a conjunction, and all inequalities need to be
violated to falsify a disjunction. This can be chosen freely by the user
in our implementation.

3.4 Experimental results

We evaluate the previous heuristics using the Python Reachability As-
sessment Tool (PyRAT) [59]. PyRAT is a static analyzer written in Python
and relies on computing libraries such as NumPy or PyTorch to verify
neural network properties. Several abstract domains are implemented,
including the DeepPoly [112] and DeepZono [39] domains. For the gradi-
ent smear heuristic we evaluate it directly using ERAN 4, the original
tool implementing DeepPoly and DeepZono.

3.4.1 PyRAT on ACAS benchmark

We first evaluate ReCIPH compared to the baseline heuristic of choosing
the widest interval and to the gradient smear heuristic re-implemented
in PyRAT.

The ACAS Xu networks, introduced in Julian et al. [130] and further
described in Julian et al. [133] are feedforward networks with ReLU
activations designed to simulate the ACAS X system. The ACAS X system
was built to give advisories to pilots to avoid collision with other aircraft.
However, the ACAS X system requires the use of a discrete look-up table
of over 2GB. The ACAS Xu networks were developed to approximate
the ACAS X system without requiring the look-up table. Originally, one
network was used with 7 inputs representing the position and velocity of
both aircraft and the previous advisory, along with 5 outputs—a score for
each possible advisory: Clear-of-Conflict (COC), Weak Left (WL), Weak
Right (WR), Strong Left (SL), Strong Right (SR) as illustrated in Figure
3.3. The network had 6 hidden layers of 50 nodes each, giving a total
300 ReLU nodes (not decoupling the activation). Two of the inputs (the
previous advisory and the vertical separation between the aircraft) were
discretized into 5 ranges each, resulting in 45 networks with 5 inputs
each.

Katz et al. [131] introduce a set of 10 properties that the ACAS Xu networks
should verify5.

We present in Table 3.1 the summarized results on all the networks of
property 1, 42 networks of property 3 and 4, and property 5, 9 and
106 on the ACAS Xu benchmark., analyzed using the DeepPoly abstract
domain. They represent a variety of difficulty with some properties

https://github.com/eth-sri/eran
https://github.com/eth-sri/eran

36 3 An input partitioning heuristic for the verification of neural networks

Figure 3.4: We implemented in PyRAT
the logging of the binary partitioning
trees (see Section 3.1.2). This is an ex-
ample from the ACAS Xu benchmark,
property 4 on network 1_1. Top tree is
the analysis using the width heuristic,
bottom tree with ReCIPH.

verifiable in fewer than 10 passes and other requiring more than 100
000 passes. We notably exclude properties that are violated: most of
them require significantly longer time and we could not run all of them
with a reasonable timeout. We did notice similar improvements on a
few falsified properties we tested, but overall the input partitioning
strategy on its own does not perform well when falsifying properties:
an additional search for adversaries is usually used to falsify properties
more efficiently.

Compared to splitting on the widest input, ReCIPH significantly improves
performance, requiring up to 19 times fewer analyses. Total analysis
time is improved proportionally: both heuristics require no additional
computation and can be parallelized. We show the binary partitioning
trees for property 4 on network 1_1 in Figure 3.4. When comparing
ReCIPH to the gradient smear scores, we see that ReCIPH requires
significantly fewer splits on properties 3 and 5—13 and 4 times fewer,
respectively. For properties 4 and 10, the number of splits using ReCIPH
is comparable to the use of the gradient smear scores. Nevertheless,
even with a similar number of splits, ReCIPH does not require any extra
computation to work and is thus more advantageous.

3.4.2 Overhead of Gradient Smear and ReCIPH

In our experiments, computing the gradient smear scores takes the
majority of the analysis time, exceeding the time for the reachability
analyses themselves. For example, for network 1_1 on property 4, gradient
computation takes more than 75% of total analysis time—39 seconds
out of a total of 51 seconds. Even with the default input partitioning in
ERAN with the same property and network, the analysis runs in a total
of 28 seconds with 19 seconds for gradient computation. In Table 3.1 we
compare the time taken to prove the properties 1, 3 and 4 by ReCIPH
and the gradient smear heuristic used in ERAN. We use two modes of
ERAN:

Table 3.1: Number of one-pass analysis
necessary to prove several properties on
the ACAS benchmark, using the Deep-
Poly domain

Property # Networks Width ReCIPH Gradient Smear

𝜙1 45 68467 15289 16521
𝜙3 42 319306 16140 209924
𝜙4 42 25906 1828 2206
𝜙5 1 142637 7023 29169
𝜙9 1 3055 2395 3877
𝜙10 1 1331 335 217

3.4 Experimental results 37

[58]: Wang et al. (2018), ‘Formal Secu-
rity Analysis of Neural Networks Using
Symbolic Intervals’

7: We did not find the description of
the strategy, or the justification for the
choices of the size of the partition, in
the literature. We described here what
we could gather from ERAN’s code. We
believe the choice of directly splitting
multiple inputs is to avoid the overhead
of multiple gradient smear computations
and the exact size of the partition is cho-
sen empirically.

[135]: Sidarta et al. (2018), ‘Damage De-
tection of Offshore Platform Mooring
Line Using Artificial Neural Network’

[136]: Sidarta et al. (2019), ‘Detection
of Mooring Line Failure of a Spread-
Moored FPSO: Part 1 — Development
of an Artificial Neural Network Based
Model’
[134]: Katz et al. (2017), ‘Reluplex: An

Efficient SMT Solver for Verifying Deep
Neural Networks’

▶ Iterative bisection, where one input is split at a time, as done in
PyRAT with ReCIPH or in Wang et al. [58] with gradient smear
scores.

▶ ERAN default mode, where the initial partition is done by splitting
multiple inputs into multiple partitions each according to their
gradient smear, forming a queue of hundreds of subproblems to
solve. Those problems are then solved with the iterative bisection
if necessary7.

We run the benchmark on the same machine without parallelization, with
the DeepPoly domain for both tools. Unsafe properties are excluded, as
ERAN does not provide falsification with the DeepPoly domain without
the complete option; in this case, the analysis runs until the timeout is
reached.

As we can see, for almost all properties, the default ERAN performs
better than bisection. We believe it is due to two main reasons:

▶ splitting into a finer partition directly requires less time to compute
the gradient

▶ in some cases, it requires fewer subproblems to solve: the "easy"
regions are directly proven safe because the partition is finer,
whereas multiple splits might be necessary with bisection.

However, splitting into a finer partition might lead to more subproblems
if the number of regions is initially too high. Overall ReCIPH still
outperforms the default ERAN partitioning strategy.

Property # Networks ERAN Bisection ERAN Default PyRAT ReCIPH

𝜙1 45 1411.07 370.21 111.93
𝜙3* 40 274.84 100.59 15.54
𝜙4 42 118.06 82.41 16.86

Table 3.2: Total time in seconds to prove
properties 1, 3 and 4 of the ACAS Bench-
mark. *: We exclude two networks where
ERAN times out and report the total time
over the remaining networks.

3.4.3 PyRAT on Mooring lines monitoring neural network

We also evaluate our heuristic on an industrial partner use-case: neural
networks for the detection of mooring line failures on offshore platforms
[135, 136]. The network provided is a small fully-connected network with
3 hidden layers of 25 nodes each and with 7 inputs and 5 outputs. The
network exists in two versions, one with ReLU activation functions and
the other with sigmoid activation functions. Unfortunately, the properties
used for this use case are under NDA, and we cannot detail them. They
are domain-specific safety properties in the same spirit as the ACAS
properties [134]. We first analyze the ReLU activation network on four
properties using the DeepPoly and DeepZono domains, with results
detailed in Table 3.3. Similar to the ACAS benchmark, we observe a sharp
decrease in the number of analysis passes with the DeepPoly domain.
These results also hold when using the DeepZono domain, with 3 to
7 times fewer analyses, showing that our heuristic extends beyond the
DeepPoly domain.

Next, we test our heuristic on the sigmoid activation network using
only the DeepZono domain on similar properties. As seen in Table 3.4,
ReCIPH also greatly decreases the number of passes required even with
a sigmoid activation function and its over-approximation.

38 3 An input partitioning heuristic for the verification of neural networks

Table 3.3: Number of one-pass analysis
necessary to prove several properties on
a 3x25 fully-connected ReLU network,
using the DeepPoly and DeepZono do-
mains (marked respectively with "P" and
"Z")

Properties P Width P ReCIPH Z Width Z ReCIPH

1 2897 843 3051 879
2 37917 6565 53589 9883
3 6515 993 10063 1373
4 9105 1531 10203 1751

Table 3.4: Number of one-pass analysis
necessary to prove two properties on a
3x25 fully-connected Sigmoid network,
using the DeepZono domain

Property Width ReCIPH

1 147 5
2∗ 1446538 1855
3∗ timeout 175137
4 1613 23
∗ Properties proven false.

[57]: Mazzucato and Urban (2021), ‘Re-
duced Products of Abstract Domains
for Fairness Certification of Neural Net-
works’
The implementation of ReCIPH within
Libra and the conducted experiments
were done by the authors of Libra.

3.4.4 Libra on a fairness benchmark

ReCIPH has also been implemented in Libra [57], a static analyzer for
certifying fairness of fully-connected neural networks used for classifica-
tion of tabular data. Libra relies on abstract domains such as DeepPoly,
combining a sound forward pre-analysis with an exact backward analysis
to quantify bias in a given input space. In this context, a bias is a region
of the input space that leads to different classification solely due to a
change in value of a sensitive input.

The backward pass complexity is exponential in the number of unstable
ReLU nodes. The forward pre-analysis partitions the input space of
a ReLU network into feasible subspaces by computing a sound over-
approximation of the values in each node, and splitting the input space to
maximize the number of ReLU nodes with fixed status (either guaranteed
to be always active or always inactive). To perform the partitioning in
reasonable time, Libra uses an upper bound𝑈 on the number of ReLU
nodes with non-fixed status and a lower bound 𝐿 on the size of the input
intervals. The partitioning stops when either the number of ReLU nodes
with non-fixed status is below𝑈 (in which case the region is considered
feasible) or when the input intervals become too small, falling below 𝐿
(in which case the region is unfeasible and Libra does not proceed with
the backward analysis). At the end of the partitioning, we thus obtain a
coverage of the original input space, the size of which depends on 𝐿 and
𝑈 , the abstract domain used, and the splitting heuristic.

As seen in Table 3.5, using ReCIPH over the default random strategy
for the splitting heuristic of Libra greatly improves the coverage of the
feasible space. With the same configuration of 𝐿 and 𝑈 it can almost
double this feasible space and in all cases the new coverage is above
94%.

Table 3.5: Percentage of the feasible
space, using the DeepPoly domain in
Libra for different configuration of 𝐿 and
𝑈

L, U values Random ReCIPH

𝐿 = 0.5, 𝑈 = 3 49.01% 94.40%
𝐿 = 0.5, 𝑈 = 5 56.15% 97.03%
𝐿 = 0.25,𝑈 = 3 81.82% 99.74%
𝐿 = 0.25,𝑈 = 5 91.58% 99.98%

3.4 Experimental results 39

[60]: Brix et al. (2024), ‘The fifth inter-
national verification of neural networks
competition (vnn-comp 2024): Summary
and results’

[59]: Lemesle et al. (2024), ‘Neural Net-
work Verification with PyRAT’

8: We refer to the VNN-COMP 2024 re-
port [60] for a full description of the
benchmarks and participating tools.

[55]: Mohapatra et al. (2020), ‘Towards
Verifying Robustness of Neural Net-
works Against A Family of Semantic Per-
turbations’

3.4.5 VNN-COMP Results

We now report results from the 5th International Verification of Neural
Networks Competition (VNN-COMP 2024) [60], the latest edition with a
public report at the time of writing. PyRAT participated in the edition
and was ranked second overall out of eight tools.

The version of PyRAT used in the competition contains many improve-
ments over the version used in Section 3.4.1 and Section 3.4.3, most
notably the support of branching on ReLU nodes [59]. However, some of
the benchmarks, described in Table 3.7, were analyzed using input parti-
tioning combined with linear approximations and ReCIPH scores8. These
comprise 6 of the 12 benchmarks in the regular track of the competition,
highlighting the practical relevance of our heuristic.

For example the cGAN benchmark is a complex benchmark on relatively
large networks, applied to image-related tasks. However, the networks’
inputs are only 5-dimensional: they take a distance condition (scalar) and
a noise vector (4-dimensional) as inputs that are passed to a generator
that produces large dimensional outputs (up to 64x64), then processed by
a discriminator that outputs a single scalar to be verified (the predicted
distance). Similarly, some semantic properties of neural networks used in
image classification (e.g., robustness to rotations) can be encoded into a
neural network with low-dimensional inputs (e.g., the angle of rotation)
[55], making input partitioning a viable refinement solution for verifying
such properties.

The ranking of PyRAT on the relevant benchmarks is reported in Table
3.6. Overall, PyRAT with the ReCIPH heuristic performs competitively
with other tools.

Benchmark PyRAT rank % Verified % Falsified Notes

cGAN 1/6 100 100 Equality with 𝛼,𝛽-CROWN
LinearizeNN 1/4 100 100 Equality with 𝛼,𝛽-CROWN and Marabou

Collins RUL CNN 5/7 100 87.5 The first 4 tools have equal scores.
TLL Verify Bench 1/8 100 100 Equality with CORA and 𝛼,𝛽-CROWN

Acas XU 3/8 98.5 100 -
Dist Shift 1/5 - - Equality with CORA and 𝛼,𝛽-CROWN.

Table 3.6: We report the rank out of the
participating tools in each benchmark
as well as the number of instances ver-
ified (the behavior of the networks sat-
isfied the specification for all the speci-
fied input space) and falsified (a coun-
terexample was successfully found). For
Dist-Shift all three tools verify and fal-
sify every property except for one where
they all timeout (on the same property).
As no tool solves every property and
no ground-truth is provided we cannot
compute coverage of verified / falsified
instances but can report a global cover-
age of 98.6 % of instances solved overall
for all three tools.

Table 3.7: VNN-COMP 2024 benchmarks where PyRAT relies on ReCIPH scores and input
partitioning.

Category Benchmark Application Network Types # Params Effective Input Dim

Complex cGAN Image Generation
& Image Prediction Conv. + Vision Transformer 500k - 68M 5

LinearizeNN NN controller approximation FC. + Conv. + Vision Transformer + Residual + ReLU 203k 4

CNN & ResNet Collins RUL CNN Condition Based Maintenance Conv. + ReLU, Dropout 60k - 262k 400 - 800

FC
TLL Verify Bench Two-Level Lattice NN Two-Level Lattice NN

(FC. + ReLU) 17k - 67M 2

Acas XU Collision Detection FC. + ReLU 13k 5
Dist Shift Distribution Shift Detection FC. + ReLU + Sigmoid 342k - 855k 792

40 3 An input partitioning heuristic for the verification of neural networks

[131]: Katz et al. (2017), ‘Reluplex: An
Efficient SMT Solver for Verifying Deep
Neural Networks’

[137]: Pulina and Tacchella (2012), ‘Chal-
lenging SMT solvers to verify neural net-
works’

[138]: Ehlers (2017), ‘Formal Verification
of Piece-Wise Linear Feed-Forward Neu-
ral Networks’

[139]: Huang et al. (2016), ‘Safety Verifi-
cation of Deep Neural Networks’
[140]: Tjeng et al. (2019), ‘Evaluating Ro-
bustness of Neural Networks with Mixed
Integer Programming’
[100]: Henriksen and Lomuscio (2021),

‘DEEPSPLIT: An Efficient Splitting
Method for Neural Network Verification
via Indirect Effect Analysis’

[141]: Kern et al. (2022), ‘Optimized sym-
bolic interval propagation for neural net-
work verification’

[142]: Koller et al. (2025), ‘Out of the
Shadows: Exploring a Latent Space for
Neural Network Verification’
[143]: Althoff (2015), ‘An Introduction to
CORA 2015’

[111]: Wang et al. (2018), ‘Efficient Formal
Safety Analysis of Neural Networks’

[144]: Royo et al. (2019), ‘Fast Neural
Network Verification via Shadow Prices’

[120]: Henriksen and Lomuscio (2020),
‘Efficient Neural Network Verification via
Adaptive Refinement and Adversarial
Search’
[145]: Bak et al. (2020), ‘Improved Geo-
metric Path Enumeration for Verifying
ReLU Neural Networks’
[112]: Singh et al. (2019), ‘Boosting Ro-

bustness Certification of Neural Net-
works’

3.5 Related Work
Early works address the verification problem of neural networks by
encoding it as an optimization problem solved exactly by a SMT/SAT
solver [131, 137–139] or MIP solver [140]. The reliance on complete solvers
often makes them impractical at scale. By contrast, bound propagation,
as described in Section 2.4.2, yields fast but coarse bounds In this section,
we focus on approaches to tighten bounds, either by partitioning the
input space or by branching on ReLU nodes, both a form of Branch and
Bound (BaB). We conclude by briefly presenting methods that go beyond
single-neuron relaxations and methods that tackle network robustness
via Lipschitz constants.

ReCIPH like heuristics The work of Henriksen and Lomuscio [100]
uses the parallel linear approximation, with one linear equation and an
error matrix to compute concrete bounds for each node, akin to a zonotope
approach. The errors are also used to score ReLU nodes to split on. The
approach is similar to ours, with the error matrix capturing some relations
between layers, and readily available after bound propagation. However,
they use to estimate the influence of ReLU nodes rather than inputs,
and it is limited to their parallel linear approximation. A concurrent
work of ours, presented at the same workshop, Kern et al. [141], builds
on the same approach but uses symbolic interval analysis with fresh
variables, enabling nonparallel linear approximations. They also perform
input partitioning, but their split score is tailored to ReLU networks:
instead of input-output relations, they average the coefficients linking
unstable internal ReLU nodes to the inputs. The goal is to split the input
that most affects ReLU activation states rather than the output bounds.
More recently, Koller et al. [142] also partition the input space to limit
the number of unstable ReLUs. Implemented in CORA [143], they use
constrained zonotopes to model post-split regions rather than products
of intervals, which allows them to exploit constraints derived from ReLU
status in latent space. Finally, 𝛼,𝛽-CROWN has used a ReCIPH-like input-
splitting heuristic, sb-fast, since its September 2022 release, although we
have not seen it described in the literature.
Several works compute tighter bounds by dividing the verification
problem into smaller subproblems based on ReLU states, another form of
Branch and Bound. If 0 lies within a ReLU node’s pre-activation bounds,
the problem can be split into two subproblems by considering the positive
and negative input cases in separate bounding problems. In these works,
bound propagation and linear approximations are used to first estimate
node status, while post-split bounds are computed with more precise
methods.

Branch and Bound with Off-the-shelf Solvers Neurify [111] uses linear
approximations (without backsubstitution) to compute intermediate
bounds and prioritizes nodes using the gradient-smear heuristic. After
the split, the bounding problem is solved with a Linear Programming (LP)
solver. Royo et al. [144] builds on Neurify using a different prioritization
strategy based on shadow prices, a form of sensitivity analysis relying on
the LP formulation. Inputs are split according to their estimated influence
on ReLU node status. VeriNet [100, 120], discussed in the previous
paragraph, use a different LP-encoding, a gradient based counterexample
search and a different view of the parallel linear approximation. Their
method is also adapted to other activations such as sigmoid or tanh. Bak
et al. [145] and Singh et al. [112] both use parallel linear approximations in
the form of zonotopes before splitting ReLU nodes. Singh et al. [112] also

3.5 Related Work 41

[146]: Tran et al. (2019), ‘Star-Based
Reachability Analysis of Deep Neural
Networks’
[147]: Katz et al. (2019), ‘The Marabou

Framework for Verification and Analysis
of Deep Neural Networks’

[148]: Bunel et al. (2020), ‘Branch and
Bound for Piecewise Linear Neural Net-
work Verification’

[149]: Lu and Kumar (2020), ‘Neural
Network Branching for Neural Network
Verification’
[150]: Dvĳotham et al. (2018), ‘A dual

approach to scalable verification of deep
networks’
[151]: Wang et al. (2021), ‘Beta-CROWN:
Efficient bound propagation with per-
neuron split constraints for complete and
incomplete neural network verification’
[152]: De Palma et al. (2021), Improved

Branch and Bound for Neural Network Veri-

fication via Lagrangian Decomposition

[153]: Zhang et al. (2022), ‘A Branch and
Bound Framework for Stronger Adver-
sarial Attacks of ReLU Networks’
[123]: Shi et al. (2025), ‘Neural Network

Verification with Branch-and-Bound for
General Nonlinearities’
[154]: Zhang et al. (2022), ‘General

Cutting Planes for Bound-Propagation-
Based Neural Network Verification’

[155]: Zhou et al. (2024), ‘Scalable Neural
Network Verification with Branch-and-
bound Inferred Cutting Planes’
[41]: Ferrari et al. (2022), ‘Complete Ver-
ification via Multi-Neuron Relaxation
Guided Branch-and-Bound’
[156]: Singh et al. (2019), ‘Beyond the

single neuron convex barrier for neural
network certification’
[115]: Salman et al. (2019), ‘A Convex

Relaxation Barrier to Tight Robustness
Verification of Neural Networks’

[126]: Elboher et al. (2019), ‘An
Abstraction-Based Framework for Neu-
ral Network Verification’
9: Bounds computed with the linear ap-
proximations discussed in Section 2.4.2
or by off-the-shelf LP-solvers fall in this
category.

[157]: Anderson et al. (2020), ‘Strong
mixed-integer programming formula-
tions for trained neural networks’
[158]: Tjandraatmadja et al. (2020), ‘The
Convex Relaxation Barrier, Revisited:
Tightened Single-Neuron Relaxations for
Neural Network Verification’
[159]: De Palma et al. (2024), ‘Scaling the
Convex Barrier with Sparse Dual Algo-
rithms’
[160]: De Palma et al. (2021), ‘Scaling the
Convex Barrier with Active Sets’

mixes the use of LP and MIP formulations, with a heuristic to choose when
to use either one. Bak et al. [145] use Star Sets [146], a method allowing
approximate bound computation using the convex hull relaxation of
ReLU activations, and exact analysis via branch and bound.Katz et al.
[147] improves upon Katz et al. [131] with a specialized SMT solver, uses
DeepPoly relaxations, and employs a heuristic based on pre-activation
bounds to choose ReLU nodes to split on. Bunel et al. [148] use both
bound propagation and an LP solver to compute intermediate bounds,
depending on the heuristic. They consider either the largest input interval
heuristic (BaB-input) or estimate the impact of splitting by computing
approximate final bounds using parallel linear approximations for each
subproblem considered (Smart Branching, BaBSB). While BaBSB is an
input partitioning strategy it is most beneficial when the subproblem
is later solved with a more precise and costly method. They also split
on ReLU nodes, prioritizing them with another scoring heuristic (Smart
ReLU, BaBSR) that estimates influence via a single backward pass.
Rather than using hand-crafted heuristics, Lu and Kumar [149] formulate
branching as a learning problem and use a graph neural network to
prioritize which nodes to split on.

Efficient Parallelised Branch and Bound Dvĳotham et al. [150] relies
on duality and a Lagrangian relaxation of the verification problem,
introducing a customized solver as an alternative to off-the-shelf LP-
solvers. While the approach is still incomplete, it can be made complete by
combining it with branch and bound as in Wang et al. [151] and De Palma
et al. [152]. Both of these work introduce different relaxations, and use a
fast parallelizable implementation with supergradient methods on a GPU.
This is a major step toward scalable branch and bound: the loss of precision
relative to the LP formulation is largely compensated by the speedup,
bounding and pruning more subproblems faster in the branching process.
De Palma et al. [152] also proposes a new branching heuristic (Fast Smart
Branching, FSB), a method more costly than BaBSR, ranking ReLU nodes
with a fast scoring heuristic then computing fast bounds only on the
best candidates to further refine the ranking. This approach remains the
key ingredient to the state of the art solver 𝛼,𝛽-CROWN, which also
comprises Branch and Bound counterexample search [153], extensions to
general non-linearities [123], support of general cutting planes, additional
linear constraints not involved in the LP formulation that can tighten the
bounds [154, 155]. MN-BAB [41] similarly uses a Lagrangian formulation
and GPU parallelization for BaB, but it is based on a multi-neuron
approximation of Singh et al. [156] and uses a priority heuristic adapted
to the multi-neuron case.

Tighter relaxations Salman et al. [115] showed that any bounding
method relying on the triangle relaxation [126] (illustrated in Figure
2.7), faces an inherent barrier limiting the tightness of the computed
bounds 9. Orthogonal to improvements obtained from branching on
ReLU nodes, a line of work seeks to overcome this barrier by employing
tighter relaxations. Singh et al. [156] proposes to formulate a multi-neuron
relaxation (kPoly), considering multiple ReLU nodes within the same
layer. Anderson et al. [157] keeps the focus on single activation node but
include the preceding affine layer of the activation when building the
convex hull. This convex relaxation is tighter than the triangle relaxation
but can introduce an exponential number of constraints in the worst case.
Tjandraatmadja et al. [158] improves on the formulation and propose a
specialized cutting plane method to compute the bounds. De Palma et al.
[159], building on previous work [160], uses a similar relaxation, dual

42 3 An input partitioning heuristic for the verification of neural networks

[2]: Raghunathan et al. (2018), ‘Semidefi-
nite relaxations for certifying robustness
to adversarial examples’

[161]: Dathathri et al. (2020), ‘Enabling
certification of verification-agnostic net-
works via memory-efficient semidefinite
programming’
[3]: Batten et al. (2021), ‘Efficient Neu-

ral Network Verification via Layer-based
Semidefinite Relaxations and Linear
Cuts’
[162]: Chiu et al. (2025), ‘SDP-CROWN:
Efficient Bound Propagation for Neural
Network Verification with Tightness of
Semidefinite Programming’

Figure 3.5: SDP and LP relaxations of
a piecewise linear activation. The SDP
relaxation of Raghunathan et al. [2] is
delimited in pink, the triangle relaxation
in blue. The unstable case is left, the
inactive case in the middle and active
case to the right. Notice that the SDP
relaxation is not exact even in the fixed
status, motivating the introduction of
linear cuts to the SDP. Figure from Batten
et al. [3].

[163]: Shi et al. (2022), ‘Efficiently com-
puting local lipschitz constants of neural
networks via bound propagation’
[164]: Fazlyab et al. (2019), ‘Efficient and

Accurate Estimation of Lipschitz Con-
stants for Deep Neural Networks’
[165]: Zhang et al. (2021), ‘Certified Ro-
bustness to Programmable Transforma-
tions in LSTMs’

[166]: Zhang et al. (2022), ‘Rethinking
Lipschitz Neural Networks and Certified
Robustness: A Boolean Function Perspec-
tive’

[167]: Anil et al. (2019), ‘Sorting out Lip-
schitz function approximation’

[168]: Araujo et al. (2023), ‘A Unified Al-
gebraic Perspective on Lipschitz Neural
Networks’

[169]: Leino et al. (2021), ‘Globally-robust
neural networks’
[58]: Wang et al. (2018), ‘Formal Secu-

rity Analysis of Neural Networks Using
Symbolic Intervals’

solvers and supergradient methods to further improve the scalability of
the approach. Another approach relaxes the verification problem as a
semidefinite program (SDP). Raghunathan et al. [2] first introduce linear
and quadratic constraints on the ReLU activations then further relax them
into a SDP. This allows to constrain ReLU nodes jointly. Dathathri et al.
[161] generalizes this formulation using its dual, making it applicable
beyond ReLU networks, and solve it with subgradient methods on GPUs.
Batten et al. [3] adds linear cuts from the triangle relaxation to the SDP
formulation, leading to a provably tighter relaxation. They rely on a layer-
based decomposition method to efficiently solve the SDP. We illustrate
the approach in Figure 3.5. Recently, Chiu et al. [162] instead build on
SDP relaxations to improve linear bound propagation for ℓ2 robustness
certification. Owing to their cubic complexity [162], SDP relaxations are
generally not as scalable as BaB with LP-based methods: In the time taken
to solve a single SDP, BaB methods can solve many subproblems using
an LP formulation, leading to tighter bounds.

Lipschitz constants Finally, verification can also be tackled by estimat-
ing a network’s Lipschitz constant—a bound on how much the output
can change when the input changes. Bound propagation methods can
be used for this purpose [163] as well as SDP relaxations [164]. Special-
ized network architectures can also be designed to have low Lipschitz
constants, enabling certified robustness by construction [165–169].

3.6 Conclusion
In this chapter, we showed that, using coefficients from linear approx-
imations to select the best input variable to split, greatly reduces the
number of regions to analyze compared to splitting on the largest input
interval first. The strategy also requires no extra computation (except
possibly averaging the coefficients). Thanks to this, ReCIPH outperforms
the gradient-smear heuristic [58] even when both use similar linear ap-
proximations, since each split with gradient smear requires an additional
backward pass to compute the scores.
Overall, we showed that our heuristic is not limited to a single abstract
domain, activation function, or tool. ReCIPH readily extends to different
linear approximations and tools with similar gains.
The main limitation of ReCIPH is its applicability primarily to neural
networks with low-dimensional inputs. Other methods, such as the
branch-and-bound approaches discussed in Section 3.5, are more appro-
priate for high-dimensional cases. We highlight that this limit does not
make the approach irrelevant as use-cases with low-dimensional inputs
remain common.
One possible extension is to accelerate splitting by partitioning more
than one input at a time or by splitting inputs into more than two sub-
intervals. Experimentally we see that it can improve analysis time for
some properties, but we did not find generalizable heuristics. We also
supervised a summer internship to explore a learning approach to find
optimal splitting choices. The intern, Thomas Boulanger, attempted a
reinforcement-learning approach to learn a splitting strategy. The results
were inconclusive: the learned strategies did not consistently lead to fewer
subproblems and incurred overhead. Finding an automated, accelerated
splitting strategy remains an open problem. With the success of branch
and bound methods we do not see the search of automated splitting
strategies as a priority, but it could be useful in some specific cases.

Applications of Certified Training

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’
[5]: Andriushchenko and Flammarion

(2020), ‘Understanding and Improving
Fast Adversarial Training’

[91]: Ortiz-Jimenez et al. (2023), ‘Catas-
trophic overfitting can be induced with
discriminative non-robust features’
[62]: De Palma et al. (2025), ‘On Using
Certified Training towards Empirical Ro-
bustness’

Certified Training for Empirical
Robustness 4

4.1 Motivation and methodol-
ogy 45

4.1.1 Motivating Example . . . 45
4.1.2 Expressive Losses 46
4.1.3 ForwAbs 49
4.2 Experimental Setup . . . 50
4.2.1 Datasets 50
4.2.2 Implementation Details . 50
4.2.3 Computational Setup . . . 50
4.2.4 Network Architectures . . 50
4.3 Preventing Catastrophic

Overfitting 51
4.3.1 FGSM 51
4.3.2 N-FGSM 53
4.3.3 ELLE 54
4.4 Bridging the Gap to

Multi-Step Adversarial
Training 57

4.4.1 Cyclic training schedule . 58
4.4.2 Long training schedule . . 59
4.4.3 Effect of Model Architec-

ture on Method Perfor-
mance 60

4.5 Hyperparameters and
scheduling 60

4.6 Sensitivity Analysis and
Performance Trade-Offs . 61

4.6.1 Sensitivity Analysis 61
4.6.2 Training Overhead 62
4.6.3 Clean Accuracies and IBP

Losses 64
4.7 Related work 69
4.7.1 SingleProp 69
4.7.2 Empirical Robustness of

Certified Training 69
4.7.3 Catastrophic Overfitting in

Certified Training Setups 70
4.7.4 Comparison with our work 71
4.8 Conclusion 71

In this chapter we present a study on the use of certified training methods
to improve the empirical robustness of neural networks.
Adversarial training is arguably the most popular way to provide em-
pirical robustness against specific adversarial examples. While variants
based on multi-step adversarial attacks incur significant computational
overhead, single-step variants are vulnerable to a failure mode known
as catastrophic overfitting, which hinders their practical utility for large
perturbations. A parallel line of work, certified training, has focused on
producing networks amenable to formal guarantees of robustness against
any possible attack. However, the wide gap between the best-performing
empirical and certified defenses has severely limited the applicability of
the latter.
Inspired by recent developments in certified training, which rely on a
combination of adversarial attacks with network over-approximations
[8], and by the connections between local linearity and catastrophic over-
fitting [5, 91], we present experimental evidence on the practical utility
and limitations of using certified training toward empirical robustness.
We show that, when tuned for the purpose, a recent certified training
algorithm can prevent catastrophic overfitting on single-step attacks, and
that it can bridge the gap to multi-step baselines under appropriate ex-
perimental settings. Finally, we present a conceptually simple regularizer
for network over-approximations that can achieve similar effects while
markedly reducing runtime.
This is joint work with Alessandro De Palma and led to a publication in
the Transactions on Machine Learning Research [62].

4.1 Motivation and methodology
Recent certified training techniques (Section 2.3) have demonstrated
that the ability to precisely control the tightness of network over-
approximations while preserving an adversarial training component
is crucial to maximize certified robustness across experimental setups.
We hypothesize that this versatility can be alternatively leveraged toward
improving the empirical robustness of the adversarial training schemes
on top of which they are applied, providing experimental evidence in
Section 4.3 and Section 4.4. This section details the certified training
algorithms employed in the experimental study. We begin with a mo-
tivating example (Section 4.1.1), then study the qualitative behavior of
existing methods in settings of interest (Section 4.1.2), and conclude by
presenting a conceptually simple regularizer designed to mimic the effect
of IBP-based training while reducing the associated overhead (Section
4.1.3).

4.1.1 Motivating Example
In order to motivate our empirical study, we show that multi-step adver-
sarial attacks, which typically exhibit superior robustness at the expense
of training time, are associated to smaller network over-approximations,
as measured by the IBP loss. Figure 4.1, which is associated to the experi-
mental setup from Table 4.2, shows that the IBP loss indeed decreases
with the number of attack steps. Furthermore, it shows two distinct

46 4 Certified Training for Empirical Robustness

Figure 4.1: IBP loss of adversarial train-
ing schemes on CIFAR-10, setup from
Table 4.2.

8 16 24
Epsilon

105

106

IB
P

Lo
ss

N-FGSM
PGD-5
PGD-10

N-FGSM
PGD-5
PGD-10

We recall some notations introduced in
Section 2.2.3:
𝒛 𝑓𝜃 (𝒙 , 𝑦) := 𝑓𝜃(𝒙)[𝑦]1 − 𝒇𝜃(𝒙) is the vec-
tor of logit differences between the class
𝑦 and all other classes, and 𝒛

𝐵(𝒙 ,𝜖),𝑦
𝑓𝜃

its
element-wise minimum value within
the perturbation set 𝐵(𝒙 , 𝜖). We note
z𝐵(𝒙 ,𝜖),𝑦
𝑓𝜃

a lower bound on 𝒛
𝐵(𝒙 ,𝜖),𝑦
𝑓𝜃

, that
is soundly approximated via IBP in this
chapter. Given such bounds the IBP
loss is defined as LIBP(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) :=
L(−z𝐵(𝒙 ,𝜖),𝑦

𝑓𝜃
; 𝑦), where L is the cross-

entropy loss.
[5]: Andriushchenko and Flammarion

(2020), ‘Understanding and Improving
Fast Adversarial Training’

[7]: Rocamora et al. (2024), ‘Efficient
local linearity regularization to overcome
catastrophic overfitting’

[91]: Ortiz-Jimenez et al. (2023), ‘Catas-
trophic overfitting can be induced with
discriminative non-robust features’

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’

[105]: Müller et al. (2023), ‘Certified
Training: Small Boxes are All You Need’

[98]: Shi et al. (2021), ‘Fast Certified Ro-
bust Training with Short Warmup’

[104]: Mao et al. (2023), ‘TAPS: Connect-
ing Certified and Adversarial Training’

[61]: Shafahi et al. (2019), ‘Adversarial
training for free!’

qualitative trends: for N-FGSM, which is prone to CO (causing the large
experimental variability), the IBP loss increases with the perturbation
radius. On the other hand,LIBP(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) decreases with 𝜖 for PGD-5
and PGD-10. Indeed, multi-step adversarial attacks yield networks that
are more locally linear compared to single-step attacks [5, 7, 91], which in
turn results in tighter z𝐵(𝒙 ,𝜖),𝑦

𝑓𝜃
bounds and hence smaller network over-

approximations. In this work, we investigate whether directly controlling
z𝐵(𝒙 ,𝜖),𝑦
𝑓𝜃

via certified training can benefit empirical robustness.

4.1.2 Expressive Losses
We recall the definition of the expressive losses defined on different
convex combinations parametrized by 𝛼 ∈ [0, 1], as described in Example
2.3.1:

L𝛼,𝑀𝑇𝐿−𝐼𝐵𝑃 := (1 − 𝛼) · Ladv(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) + 𝛼 · LIBP(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦).
L𝛼,𝐸𝑋𝑃𝐼𝐵𝑃 := Ladv(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦)1−𝛼 · LIBP(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦)𝛼 .

L𝛼,𝐶𝐶−𝐼𝐵𝑃 := L
(
−

[
(1 − 𝛼) · 𝒛 𝑓𝜃 (𝒙adv , 𝑦) + 𝛼 · z 𝑓𝜃 (𝒙 , 𝑦)

]
; 𝑦

)
.

We refer to Section 2.3.1 and Figure 2.3 for the description of the SABR loss
[105], a more involved way to combine adversarial and IBP training.

Expressive losses in the certified robustness context In order to max-
imize certified accuracy (defined as the share of inputs verified to be
robust) and stabilize training, previous work [8, 105] deployed the losses
under a specific set of conditions. First, shallow architectures, such as the
popular 7-layer CNN-7 [8, 98, 104, 105], which, aided by specialized initial-
ization and regularization [98], limits the growth of the IBP bounds over
consecutive layers. Second, relatively long training schedules featuring
gradient clipping, a warm-up phase of standard training, and a ramp-up
phase during which the perturbation radius used to compute both the
attack and the IBP bounds is gradually increased from 0 to the target
value 𝜖. Finally, relatively large values of 𝛼 to reduce the magnitude of the
bounds z𝐵(𝒙 ,𝜖),𝑦

𝑓𝜃
on the logit differences. In this context, all the expressive

losses from Example 2.3.1 display a similar qualitative behavior, attaining
roughly the same certified robustness [8].

Qualitative differences in adversarial training setups In adversarial
training, overhead is often a major concern [61]. Indeed, works on single-

4.1 Motivation and methodology 47

[75]: He et al. (2016), ‘Identity mappings
in deep residual networks’
1: Except for the SVHN dataset [170].
Jorge et al. [4] for instance increase the
perturbation for the first 5 epochs and
show several settings where the trained
classifier is constant (a form of underfit-
ting).
[4]: Jorge et al. (2022), ‘Make Some Noise:
Reliable and Efficient Single-Step Adver-
sarial Training’

[6]: Wong et al. (2020), ‘Fast is better than
free: Revisiting adversarial training’
[80]: Rice et al. (2020), ‘Overfitting in
adversarially robust deep learning’

Table 4.1: IBP loss at initialization for
the network architectures considered in
this work, computed on the CIFAR-10
training set against perturbations of
radius 𝜖 = 24/255 (means and standard
deviations for 5 runs).

Architecture IBP loss

PreActResNet18 (2.20 ± 0.06) × 1016

CNN-7 (8.67 ± 0.18) × 105

CNN-5 (1.11 ± 0.01) × 104

[4]: Jorge et al. (2022), ‘Make Some Noise:
Reliable and Efficient Single-Step Adver-
sarial Training’

We recall notations: upper script to enu-
merate through layers (𝒙𝑘 is the 𝑘-th
layer output), 𝒙[𝑖] to denote the 𝑖-th com-
ponent of a vector 𝒙.

step adversarial training typically rely on deeper networks and shorter
training schedules to maximize empirical robustness while minimizing
runtimes.
A common setting, involves a PreactResNet18 [75] trained with a cyclic
learning rate and without any gradient clipping, ramp-up 1 nor warm-
up [4–6].
Owing to the exploding IBP loss at initialization and to the specific
training hyperparameters, pure IBP training is not directly applicable to
this setup.
In Table 4.1 we compute the IBP loss at initialization on the three network
architectures employed in this work, which provides an indication of the
size of the IBP network over-approximation. Specifically, we measure
the average IBP loss over the standard CIFAR-10 training set, against
perturbations of radius 𝜖 = 24/255. It shows that, as expected, the network
bounds explode with the model depth, with PreActResNet18 displaying
an IBP loss at initialization that is several orders of magnitude larger
than those of the two employed CNN architectures.
Finally, CNN-7 features an IBP loss almost two orders of magnitude larger
than CNN-5, explaining the qualitative differences in behavior from Figure
4.12.
In order to study the behavior of expressive losses in this context, we
tuned the expressive losses to maximize IBP-based verifiability on CIFAR-
10 under perturbations of radius 𝜖 = 8/255, using N-FGSM to generate
𝒙adv. Figure 4.2 shows that MTL-IBP, CC-IBP as well as SABR are unable
to attain non-negligible certified accuracy via IBP in this context. On
the other hand, Exp-IBP reaches almost 20% IBP certified accuracy,
highlighting a significant qualitative difference in behavior.

Sensitivity of expressive losses In order to gain further insight on this,
we plot the sensitivity of the four expressive losses on two toy networks
where the magnitude of the IBP bounds is controlled through a scalar
parameter 𝑤.
The toy neural networks are fully connected networks of depth 𝑛 designed
to feature IBP bounds which are tunable in magnitude through a scalar
parameter 𝑤, and explode with the depth of the network. They are
defined as follows:

𝒙1 = ReLU
([
𝑤 −𝑤
−𝑤 𝑤

]
𝒙0

)
,

𝒙𝑛 =

[
2 0
0 2

]
𝒙𝑛−1 +

[
3
1

]
,

𝒙𝑘 = ReLU
([

2 0
0 2

]
𝒙𝑘−1

)
∀ 𝑘 ∈ J2, 𝑛 − 1K ,

(4.1)

evaluating to:

𝒙𝑛 = 2𝑛−1 ReLU ©­«𝑤
©­«
𝒙0[0] − 𝒙0[1]
𝒙0[1] − 𝒙0[0]

ª®¬
ª®¬ +

[
3
1

]
.

Let us assume that 𝑦 = 1 (a similar reasoning holds if 𝑦 = 0). In this

48 4 Certified Training for Empirical Robustness

Figure 4.2: IBP certified robustness
attained by expressive losses on
the PreActResNet18 training setup
from Jorge et al. [4]. Validation results
on CIFAR-10 under perturbations of
𝜖 = 8/255. Hyperparameters are: 𝛼 = 0.1
for Exp-IBP, 𝛼 = 10−15 for CC-IBP and
MTL-IBP, 𝛼 = 10−9 for SABR. They are
chosen to reduce the IBP loss as much as
possible on the validation set. N-FGSM
is

5 10 15 20 25 30
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

IB
P

Ac
cu

ra
cy

 &
 P

GD
7

Ac
c. CC-IBP

MTL-IBP
Exp-IBP
SABR
N-FGSM

(a) Certified accuracy via IBP bounds (solid lines), empirical accuracy under PGD-7 attacks
(dashed).

5 10 15 20 25 30
Epochs

102

105

108

1011

1014
IB

P
Lo

ss
CC-IBP
MTL-IBP
Exp-IBP
SABR
N-FGSM

(b) IBP loss.

context, if 𝑤 ≥ 0, the logit differences 𝒛𝒙𝑛 (𝒙0 , 𝑦) can be computed as:

𝒛𝒙𝑛 (𝒙0 , 1) = 2𝑛−1 [
ReLU

(
𝑤

(
𝒙0[1] − 𝒙0[0]

))
− ReLU

(
𝑤

(
𝒙0[0] − 𝒙0[1]

))]
− 2

= 𝑤 2𝑛−1 [
ReLU

(
𝒙0[1] − 𝒙0[0]

)
− ReLU

(
𝒙0[0] − 𝒙0[1]

)]
− 2

= 𝑤 2𝑛−1 (
𝒙0[1] − 𝒙0[0]

)
− 2.

If an 𝒙̃0 such that 𝒙̃0
1 − 𝒙̃0

0 < 0 belongs to the perturbation set 𝐵(𝒙0 , 𝜖),
then 𝒛𝒙𝑛 (𝒙̃0 , 1) will have (−∞,−2] as image for 𝑤 ∈ [0,+∞). Noting
that the relative IBP lower bounds 𝒍𝐵(𝒙

0 ,𝜖),1
𝒙𝑛 evaluate to −2 if 𝑤 = 0 (see

Eq. (2.16)), that 𝒍𝐵(𝒙
0 ,𝜖),1

𝒙𝑛 ≤ 𝒛𝒙𝑛 (𝒙̃0 , 1) for any 𝑤 ≥ 0, and that 𝒍𝐵(𝒙
0 ,𝜖),1

𝒙𝑛

is a continuous function with respect to 𝑤 (as it is computed through
compositions and linear combinations of continuous functions), the
image of 𝒍𝐵(𝒙

0 ,𝜖),1
𝒙𝑛 for 𝑤 ∈ [0,+∞)will also be (−∞,−2]. In addition, for

any fixed 𝑤 > 0, 𝒍𝐵(𝒙
0 ,𝜖),1

𝒙𝑛 will decrease at least as fast as 𝒛𝒙𝑛 (𝒙̃0 , 1) (which
decreases exponentially) with the depth of the network.
In order to meet the above condition, Figure 4.3 uses 𝒙0 = [−5, 5]𝑇 ,
𝑦 = 1 and 𝐵(𝒙0 , 10) as perturbation. Furthermore, in order to keep the
adversarial loss constant with 𝑤 for the purposes of Figure 4.3, we set
𝒙adv = [0, 0]𝑇 , for which 𝒛𝒙𝑛 (𝒙adv , 1) = −2 regardless of 𝑤.
Figure 4.3 shows that on the deeper network the MTL-IBP loss either
flattens onto Ladv(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) at large IBP loss values (small 𝛼), or
explodes with the IBP bounds, resulting in unstable training behavior
(larger 𝛼). CC-IBP and SABR display a similar behavior.
On the other hand, Exp-IBP can be tuned so as to be able to drive
LIBP(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) to very small values without exploding at larger 𝑤
values. On the shallow network, instead, for which the IBP bounds are
significantly smaller, MTL-IBP, CC-IBP and SABR can be tuned to display
roughly the same behavior as Exp-IBP for smaller LIBP(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦)
without taking overly large loss values within the considered parameter
range. We believe this explains their homogeneous behavior in training
setups designed to prevent large IBP bounds, such as those typically
employed in the certified training literature.

4.1 Motivation and methodology 49

10 5 10 4 10 3 10 2 10 1 100 101

w

100

101

102

103

104

105

106

107

Lo
ss

CC-IBP
MTL-IBP
Exp-IBP
SABR
Adv
IBP

(a) 18 layers; 𝛼 = 10−5 for CC-IBP, MTL-
IBP and SABR.

10 5 10 4 10 3 10 2 10 1 100 101

w

100

101

102

103

104

105

106

107

Lo
ss

CC-IBP
MTL-IBP
Exp-IBP
SABR
Adv
IBP

(b) 18 layers; 𝛼 = 10−2 for CC-IBP, MTL-
IBP and SABR.

10 5 10 4 10 3 10 2 10 1 100 101

w

101Lo
ss

CC-IBP
MTL-IBP
Exp-IBP
SABR
Adv
IBP

(c) 2 layers; 𝛼 = 3 × 10−2 for CC-IBP,
MTL-IBP and SABR.

Figure 4.3: Sensitivity of the expressive
losses on a toy network of varying depth,
with 𝛼 = 10−1 for Exp-IBP. For all three
plots, CC-IBP displays almost identical
behavior to MTL-IBP.

Considering the similar qualitative behavior of MTL-IBP, CC-IBP and
SABR, we focus on MTL-IBP and Exp-IBP in the rest of this chapter.

Maximizing empirical accuracy As seen in Figure 4.2, expressive losses
can pay a large price in empirical accuracy compared to 𝛼 = 0 (pure
N-FGSM, in this case) when 𝛼 is tuned to tighten the IBP bounds. One
may hence conclude that certified robustness is at odds with empirical
accuracy. In section Section 4.4 we instead show that, when 𝛼 is tuned
for the purpose, expressive losses can result in increased empirical
robustness.

4.1.3 ForwAbs

Expressive losses require the computation of IBP bounds 𝒍𝐵(𝒙 ,𝜖),𝑦
𝑓𝜃

using
the procedure in Eq. (2.16), whose cost roughly corresponds to two
network evaluations (also called forward passes): one using the original
network, the other employing the absolute value of the network weights.
This overhead on top of adversarial training is negligible only when 𝒙adv
are computed via multi-step attacks. We here study less expensive yet
conceptually simple ways to control the IBP bounds when single-step
attacks are instead employed.
We denote by 𝜹𝑘 := (𝒖̂𝑘 − 𝒍𝑘) the gap between the lower and upper
bounds after the 𝑘-th affine layer.
For ReLU networks, 𝜹𝑘 can be upper bounded by |𝑊 𝑘 |𝜹𝑘−1 ≥
|𝑊 𝑘 |(𝜎(𝒖̂𝑘−1) − 𝜎(𝒍𝑘−1)). This upper bound coincides with 𝜹𝑘 in the
case of Deep Linear Networks (DLNs), for which 𝜎(𝒂) = 𝒂, or if the
ReLUs are passing (𝒍𝑘 ≥ 0). We propose to employ 𝜹̄𝑛 , which we define
as the (looser) upper bound to 𝜹𝑛 obtained through repeated use of the
|𝑊 𝑘 |𝜹𝑘−1 bound, as a regularizer for the IBP loss. The 𝜹̄𝑛 term can be
computed at the cost of a single forward pass through an auxiliary net-
work with 𝜎(𝒂) = 𝒂 where each affine layer g𝑘(𝒂) =𝑊 𝑘𝒂 + 𝒃 is replaced
by h𝑘(𝒂) = |𝑊 |𝑘𝒂. We call the resulting method ForwAbs (Forward pass
in Absolute value).

Definition 4.1.1 The ForwAbs loss takes the following form:

LForwAbs

𝜆 (𝒇𝜃 ,B𝜖(𝒙); 𝑦) := Ladv(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) + 𝜆
(
1𝑇 𝜹̄𝑛

)
,

where: 𝜹̄1 = 𝜹1 = 2𝜖|𝑊1|1, 𝜹̄𝑘 = |𝑊 𝑘 |𝜹̄𝑘−1 ∀ 𝑘 ∈ J2, 𝑛K.
(4.2)

In order to demonstrate the empirical correlation between the ForwAbs
term 𝜹̄𝑛 and the IBP bounds 𝒍𝐵(𝒙 ,𝜖),𝑦

𝑓𝜃
,

Figure 4.4 presents the results of a ForwAbs-trained network, where the
𝜆 coefficient is tuned to minimize the IBP bounds in the same setup as
Figure 4.2. In spite of its simplicity and of its significantly smaller runtime
overhead, ForwAbs can drive the IBP loss to roughly the same values
attained by MTL-IBP. Furthermore, the final LIBP(𝑓𝜃 , 𝐵(𝒙 , 𝜖); 𝑦) attained
by ForwAbs is significantly lower than those associated to N-FGSM.
Strong ℓ1 regularization over the weights (with regularization coefficient
𝜆ℓ1 = 0.04) fails to achieve a comparable effect, demonstrating that the
behavior of ForwAbs is not merely a consequence of small ℓ1 norms of
the network weights.

50 4 Certified Training for Empirical Robustness

5 10 15 20 25 30
Epochs

102

104

106

108

1010

1012

1014

IB
P

Lo
ss

ForwAbs
MTL-IBP
1 Reg.

N-FGSM

ForwAbs MTL-IBP N-FGSM 1 Reg.
80

100

120

140

160

180

200

220

Ep
oc

h
ru

nt
im

e
[s

]

Figure 4.4: IBP loss over epochs (top), box
plots (10 runs) for the training time of
an epoch (bottom), setup as Figure 4.2.
Hyperparameters are: 𝛼 = 0.1 for Exp-
IBP, 𝛼 = 10−15 for CC-IBP and MTL-IBP,
𝛼 = 10−9 for SABR, 𝜆̃ = 10−15 for For-
wAbs and 𝜆ℓ1 = 0.04 for ℓ1-regularized
N-FGSM. They are chosen to reduce the
IBP loss as much as possible on the val-
idation set. For all methods in this ex-
periment, larger values among those we
considered led to numerical problems
or trivial behaviors, such as networks
consistently outputting the same class in
our implementation.

[171]: Krizhevsky and Hinton (2009),
‘Learning multiple layers of features from
tiny images’
[170]: Netzer et al. (2011), ‘Reading Digits
in Natural Images with Unsupervised
Feature Learning’
[124]: Paszke et al. (2019), ‘PyTorch:

An Imperative Style, High-Performance
Deep Learning Library’
[4]: Jorge et al. (2022), ‘Make Some Noise:
Reliable and Efficient Single-Step Adver-
sarial Training’

[7]: Rocamora et al. (2024), ‘Efficient
local linearity regularization to overcome
catastrophic overfitting’

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’
[46]: Xu et al. (2020), ‘Automatic Per-

turbation Analysis for Scalable Certified
Robustness and Beyond’

[76]: Ioffe and Szegedy (2015), ‘Batch Nor-
malization: Accelerating Deep Network
Training by Reducing Internal Covariate
Shift’

4.2 Experimental Setup
We first present the experiment setup and design choices made for our
empirical study.

4.2.1 Datasets
We focus on three standard 32×32 image classification datasets: CIFAR-10
and CIFAR-100 [171], and SVHN [170]. CIFAR-10 and CIFAR-100 consist
of 60,000 32× 32 RGB images, with 50,000 images for training and 10,000
for testing. CIFAR-10 contains 10 classes, while CIFAR-100 contains 100
classes. SVHN consists of 73,257 32× 32 RGB images, with 73,257 images
for training and 26,032 for testing.
Unless specified otherwise, for tuning purposes or when reporting
validation results we use a random 20% holdout of the training set as
validation set, and train on the remaining 80%. After tuning and when
reporting test set results, we use the standard train and test splits for all
datasets.

4.2.2 Implementation Details
Our implementation relies on PyTorch [124] and on the public codebases
from Jorge et al. [4], Rocamora et al. [7], and De Palma et al. [8]. We
compute IBP bounds using the Auto_LiRPA implementation [46].
N-FGSM may return a point outside the set of allowed perturbations
𝐵(𝒙 , 𝜖). As a result, when using it to compute the adversarial point 𝒙adv
for SABR, we disable the projection of the SABR perturbation subset onto
the original perturbation set, simply setting 𝒙𝛼 = 𝒙adv, which allows the
implementation to meet the definition of expressivity (see Definition
2.3.1) for small 𝛼 values.
Consistently with the single-step adversarial training literature [4, 7],
BatchNorm layers [76], which are present in all the employed models,
are always kept in training mode throughout training (including during
the attacks). When computing IBP bounds for expressive losses and
ForwAbs terms at training time, we use the batch statistics from the
current adversarial attack. For ForwAbs, these are retrieved from the
Auto_LiRPA implementation [46]. The clean inputs are never fed to the
network at training time, except when using FGSM to generate the attack
or when training with pure IBP (in that case, the clean batch statistics are
used to compute the IBP bounds). The outcome of the running statistics
compute during training is systematically employed at evaluation time.

4.2.3 Computational Setup
All the experiments of the main empirical results in Section 4.3 and
Section 4.4 were run on a single GPU each, allocated from two separate
Slurm-based internal clusters: the CLuster pour l’Expérimentation et le

Prototypage Scientifique (CLEPS)2, and the Factory-IA cluster3. We used
the following GPU models from CLEPS: Nvidia V100, Nvidia RTX6000,
Nvidia RTX8000, Nvidia GTX 1080Ti, Nvidia RTX2080Ti. And the fol-
lowing GPU models from the Factory-IA: Nvidia Quadro P5000, Nvidia
H100.

4.2.4 Network Architectures
The PreActResNet18 and CNN-7 architectures used in our experiments
are left unvaried with respect to the implementations from Jorge et al. [4]

4.3 Preventing Catastrophic Overfitting 51

2: https://paris-cluster-2019.
gitlabpages.inria.fr

3: https://www.
universite-paris-saclay.fr/
plateforme-saclay-ia

[98]: Shi et al. (2021), ‘Fast Certified Ro-
bust Training with Short Warmup’

[6]: Wong et al. (2020), ‘Fast is better than
free: Revisiting adversarial training’

[5]: Andriushchenko and Flammarion
(2020), ‘Understanding and Improving
Fast Adversarial Training’

and De Palma et al. [8], respectively.
The CNN-5 architecture has the following structure:

1. convolutional layer with 64 3×3 filters, stride = 1 and padding = 1,
followed by BatchNorm and a ReLU activation function;

2. convolutional layer with 64 4×4 filters, stride = 2 and padding = 1,
then BatchNorm and ReLU;

3. convolutional layer with 128 4×4 filters, stride = 2 and padding = 1,
then BatchNorm and ReLU;

4. linear layer with 512 neurons, then BatchNorm and ReLU;
5. linear layer with 𝑘 (the number of classes) neurons.

All the networks trained using MTL-IBP, Exp-IBP and ForwAbs are ini-
tialized using the specialized technique from Shi et al. [98], which results
in smaller IBP bounds at initialization. Except for the experiments from
Section 4.1 and for those in Table 4.2, where the specialized initialization
is employed in order to fairly compare IBP bounds, all the networks
trained via pure adversarial training and ELLE (Section 4.3.3) are instead
initialized using PyTorch’s default initialization.

4.3 Preventing Catastrophic Overfitting
This section experimentally demonstrates that, on settings from the
single-step adversarial training literature, Exp-IBP and ForwAbs can
prevent CO when applied on top of single-step attacks.

4.3.1 FGSM
The seminal work from Wong et al. [6] established that FGSM, which
is arguably the most vulnerable single-step attack, suffers from CO on
CIFAR-10 from as early as 𝜖 = 8/255. Therefore, assessing whether MTL-
IBP, Exp-IBP and ForwAbs can be used to prevent CO when FGSM is
used to generate the adversarial point 𝒙adv is a crucial qualitative test. We
consider two settings: 𝜖 = 8/255, and the much harder 𝜖 = 24/255. In line
with the single-step adversarial training literature [4, 5, 7] and Section 4.1,
we focus on PreactResNet18, trained via a cyclic learning rate schedule
for 30 epochs. We run the three algorithms with a varying degree of
regularization on their over-approximation tightness, plotting for each
method the successful runs (i. e., preventing CO) having the smallest 𝛼
and 𝜆 values.
The goal of the experiment is to qualitatively discern whether certified
training schemes can prevent catastrophic overfitting on FGSM. In order
to determine this, we ran a series of Exp-IBP, MTL-IBP and ForwAbs
experiments directly on the CIFAR-10 test set, and plotted the successful
runs (in terms of preventing CO) with the smallest 𝛼 or 𝜆̃ values (among
those tried), see caption of Figure 4.5 for details.

SoftPlus While we focus on ReLU networks in all our experiments, as
they are the most common in the catastrophic overfitting literature, and
the certified training literature, we investigate the potential of certified
training schemes to prevent CO on non-piecewise linear networks. In
particular, we focus on a modified PreActResNet18 architecture, for
which each ReLU is replaced by a SoftPlus activation, relying on the
training schedule from Figure 4.5.

Definition 4.3.1 SoftPlus is defined as 𝜎(𝒙) = log(1 + 𝑒𝒙).

https://paris-cluster-2019.gitlabpages.inria.fr
https://paris-cluster-2019.gitlabpages.inria.fr
https://www.universite-paris-saclay.fr/plateforme-saclay-ia
https://www.universite-paris-saclay.fr/plateforme-saclay-ia
https://www.universite-paris-saclay.fr/plateforme-saclay-ia

52 4 Certified Training for Empirical Robustness

Figure 4.5: The use of certified train-
ing techniques on top of FGSM can
prevent CO for PreActResNet18 on the
CIFAR-10 test set under perturbations
of 𝜖 = 8/255 and 𝜖 = 24/255. Hyperpa-
rameters are as follows: on 𝜖 = 8/255,
𝛼 = 3 × 10−2 for Exp-IBP, 𝛼 = 10−8 for
MTL-IBP, 𝜆̃ = 10−18 for ForwAbs; on
𝜖 = 24/255, 𝛼 = 2.5 × 10−2 for Exp-IBP,
𝛼 = 10−7 for MTL-IBP, 𝜆̃ = 2 × 10−16 for
ForwAbs.
Training schedule We use a short sched-
ule popular in the literature [4–7]. The
batch size is set to 128, and SGD with
weight decay of 5 × 10−4 is used for the
optimization. Crucially, no gradient clip-
ping is employed, which (in addition to
network depth and the lack of ramping
up) we found to be a major factor behind
the instability of pure IBP training (see
Section 4.1.2). We train for 30 epochs with
a cyclic learning rate linearly increasing
from 0 to 0.2 during the first half of the
training then decreasing back to 0.

5 10 15 20 25 30
Epochs

0.0

0.1

0.2

0.3

0.4

AA
 A

cc
. &

 IB
P

Ac
cu

ra
cy

Exp-IBP
MTL-IBP
ForwAbs
FGSM

(a) AutoAttack (solid) and IBP (dashed) acc., 𝜖 = 8/255.

5 10 15 20 25 30
Epochs

0.00

0.05

0.10

0.15

AA
 A

cc
. &

 IB
P

Ac
cu

ra
cy Exp-IBP

MTL-IBP
ForwAbs
FGSM

(b) AutoAttack (solid) and IBP (dashed) acc., 𝜖 = 24/255.

5 10 15 20 25 30
Epochs

102

105

108

1011

1014

1017

IB
P

Lo
ss

Exp-IBP
MTL-IBP
ForwAbs
FGSM

(c) IBP loss for 𝜖 = 8/255.

5 10 15 20 25 30
Epochs

102

105

108

1011

1014

1017

IB
P

Lo
ss

Exp-IBP
MTL-IBP
ForwAbs
FGSM

(d) IBP loss for 𝜖 = 24/255.

−3 −1 1 3

1

2

3

𝑥

𝑦SoftPlus
ReLU

Figure 4.6: SoftPlus activation function,
compared to ReLU.

Owing to the monotonicity of SoftPlus, IBP bounds can be computed
using the procedure outlined in Section 2.2.4 and using the Auto_-
LiRPA library, which we also employ for ReLU networks. We leave the
ForwAbs implementation unvaried with respect to Section 4.1.3
Figure 4.7 provides results for CIFAR-10 and CIFAR-100 at 𝜖 = 24/255,
for which we show FGSM to be highly vulnerable to CO. Mirroring the
experimental procedure for Figure 4.5, we demonstrate that MTL-IBP,
Exp-IBP and ForwAbs can all prevent CO on this setting. Similarly to
the ReLU experiments, this involves significantly decreasing the IBP loss
compared to FGSM.

4.3 Preventing Catastrophic Overfitting 53

5 10 15 20 25 30
Epochs

0.00

0.05

0.10

0.15
PG

D7
 A

cc
. &

 IB
P

Ac
cu

ra
cy

Exp-IBP
MTL-IBP
ForwAbs
FGSM

(a) PGD-7 (solid) and IBP (dashed) acc., CIFAR-10.

5 10 15 20 25 30
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

PG
D7

 A
cc

. &
 IB

P
Ac

cu
ra

cy Exp-IBP
MTL-IBP
ForwAbs
FGSM

(b) PGD-7 (solid) and IBP (dashed) acc., CIFAR-100.

5 10 15 20 25 30
Epochs

103

107

1011

1015

1019

IB
P

Lo
ss

Exp-IBP
MTL-IBP
ForwAbs
FGSM

(c) IBP loss for CIFAR-10.

5 10 15 20 25 30
Epochs

103

107

1011

1015

1019

IB
P

Lo
ss

Exp-IBP
MTL-IBP
ForwAbs
FGSM

(d) IBP loss for CIFAR-100.

Figure 4.7: When applied on top of FGSM, certified training techniques can prevent CO beyond ReLU networks. Results with a
modified PreActResNet18 employing SoftPlus activations, for perturbations of 𝜖 = 24/255 on the CIFAR-10 and CIFAR-100 test sets.
The hyperparameters are as follows: on CIFAR-10, 𝛼 = 5 × 10−3 for Exp-IBP, 𝛼 = 2 × 10−11 for MTL-IBP, 𝜆̃ = 10−20 for ForwAbs; on
CIFAR-100, 𝛼 = 1 × 10−2 for Exp-IBP, 𝛼 = 10−10 for MTL-IBP, 𝜆̃ = 10−20 for ForwAbs. The training schedule for CIFAR-100 is the same as
for CIFAR-10: 30 epochs with a cyclic learning rate linearly increasing from 0 to 0.2 during the first half of the training then decreasing
back to 0.

[7]: Rocamora et al. (2024), ‘Efficient
local linearity regularization to overcome
catastrophic overfitting’

[92]: Lin et al. (2023), ‘Eliminating catas-
trophic overfitting via abnormal adver-
sarial examples regularization’

[93]: Lin et al. (2024), ‘Layer-Aware Anal-
ysis of Catastrophic Overfitting: Reveal-
ing the Pseudo-Robust Shortcut Depen-
dency’

N-FGSM hyperparameters We use the
same hyperparameters as Jorge et al.
[4]: the uniform perturbation is sampled
from [−2𝜖, 2𝜖] for every setting except
for SVHN with 𝜖 = 12/255 where the
perturbation is sampled from [−3𝜖, 3𝜖].
The step size is set to 𝛼 = 𝜖 for all set-
tings.

4.3.2 N-FGSM

As explained in Section 2.2.2, the addition of noise on top of FGSM can
mitigate CO at lower perturbation radii without any overhead. However,
previous single-step adversarial training work [7, 92, 93] showed that
even the state-of-the-art in noise-based single-step adversarial training, N-
FGSM, becomes vulnerable when 𝜖 is larger. In order to complement the
results of Figure 4.5, we now consider a more realistic setting where cer-
tified training schemes rely on adversarial points 𝒙adv generated through
N-FGSM, investigating the empirical robustness cost of preventing CO at
large 𝜖 values from the literature [7]. As for the FGSM experiments, we
use PreactResNet18 with a 30-epoch cyclic training schedule. In these
experiments we use empirical robustness to AutoAttack (AA) as the
main performance criterion, and tune MTL-IBP, Exp-IBP and ForwAbs
to maximize it on a holdout validation set, with 𝜖 = 24/255 for CIFAR-10
and CIFAR-100, and with 𝜖 = 12/255 for SVHN. As reported in Section
4.6.3, this tuning criterion will take a relatively heavy toll on standard
performance. Nevertheless, Section 4.6 shows that, if desired, different
tuning criteria may yield better trade-offs between clean and empirical
robust accuracies. We then retrain on the full training set with the same
chosen value for all the considered perturbation radii, reporting the
test-set AA accuracy (and IBP accuracy when non-null). For this network,
on CIFAR-100 and SVHN, we found the single-seed tuning employed in
the rest of the paper to be a poor marker of final performance. Figure
4.9 reports values tuned to maximize mean validation PGD-50 accuracy
on 5 seeds while preventing CO. Figure 4.8b shows an estimate of the
training cost of each algorithm, computed on a single epoch on 80% of
the CIFAR-10 training set: see Section 4.6.2 for further details.

Results Figure 4.8 shows that all the three considered algorithms can
prevent CO for CIFAR-10, resulting in significantly larger robustness
than N-FGSM on both 𝜖 = 20/255 and 𝜖 = 24/255. While certified training
schemes pay a large price in empirical robustness for 𝜖 = 12/255, they
remarkably attain stronger AA robustness than PGD-5 for 𝜖 = 24/255
with reduced runtime. Furthermore, for 𝜖 ≥ 20/255 Exp-IBP yields an IBP

54 4 Certified Training for Empirical Robustness

[7]: Rocamora et al. (2024), ‘Efficient
local linearity regularization to overcome
catastrophic overfitting’

accuracy comparable to the average AA accuracy of N-FGSM. As shown
in Figure 4.9, CIFAR-100 and SVHN display instead worse trade-offs.
While MTL-IBP, Exp-IBP and ForwAbs all prevent CO on CIFAR-100
for 𝜖 ≥ 20/255, as visible from the reduced confidence intervals, they do
so at a large cost in average empirical robustness for 𝜖 < 24/255. On the
SVHN experiments, N-FGSM never suffers from CO. ForwAbs results
in relatively small yet consistent performance improvements, while
improvements from Exp-IBP are negligible. Remarkably, MTL-IBP fails
to drive the IBP loss sufficiently low (cf. Figure 4.20c) and appears to be
more vulnerable to CO than N-FGSM at 𝜖 = 12/255. We ascribe this to the
extreme sensitivity of MTL-IBP in the considered setup, linked to the
qualitative properties of its loss on deeper networks described in Section
4.1.2 (see Figure 4.3). We exclude MTL-IBP from the rest of the empirical
study owing to this failure case.

Figure 4.8: Certified training techniques
can prevent CO for N-FGSM when train-
ing PreactResNet18 on CIFAR-10, over-
coming the robustness of PGD-5 for
𝜖 = 24/255 while incurring less overhead.
The training schedule is the 30 epochs
schedule as in Figure 4.5.

12 16 20 24
Epsilon

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

AA
 A

cc
. &

 IB
P

Ac
cu

ra
cy

PGD-5
PGD-10
ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

PGD-5
PGD-10
ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

(a) AA (solid lines) and IBP (dashed) accuracies. Means over 5 repetitions and their 95%
CIs.

ForwAbs MTL-IBP Exp-IBP N-FGSM PGD-5 PGD-10

100

150

200

250

300

350

400

450

Es
tim

at
ed

 e
po

ch
 ru

nt
im

e
[s

]

(b) Box plots (10 runs) for the training time of a single epoch, estimated on a 80% subset of
the training set.

4.3.3 ELLE
The main objective of this work is to demonstrate that certified training
techniques can be successfully employed toward empirical robustness,
hence beyond their original design goal. As part of the provided evidence,
Section 4.3.1 and Section 4.3.2 show that Exp-IBP and ForwAbs can
prevent CO on settings common to the single-step adversarial training
literature. In order to contextualize their performance for the task, we
now provide a comparison of the performance of Exp-IBP, MTL-IBP and
ForwAbs with ELLE-A [7], a state-of-the-art method designed to prevent
catastrophic overfitting.

4.3 Preventing Catastrophic Overfitting 55

12 16 20 24
Epsilon

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

AA
 A

cc
.

ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

(a) CIFAR-100

6 8 10 12
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

AA
 A

cc
ur

ac
y

ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

(b) SVHN

Figure 4.9: When training
PreactResNet18, certified train-
ing techniques can prevent CO on
CIFAR-100, albeit decreasing the average
empirical robustness for perturbation
radii they were not tuned for. N-FGSM
does not display CO for SVHN on
the same network: ForwAbs results
nevertheless in minor average empirical
robustness improvements, while
MTL-IBP induces CO at 𝜖 = 12/255
(means and 95% CIs over 5 runs). The
CIFAR-100 is the same short schedule as
CIFAR-10. On SVHN the training is done
for 15 epochs, with a cyclic learning rate
linearly increasing from 0 to 0.05 during
6 epochs, then decreasing back to 0 for
the remaining 9 epochs. Furthermore,
for SVHN only, the attack perturbation
radius is ramped up from 0 to 𝜖 during
the first 5 epochs, following Jorge et al.
[4]

The experimental setup is the one from Figure 4.8 and Figure 4.9 (a
PreActResNet18 trained with a cyclic training schedule). As for the
certified training techniques, we use N-FGSM as underlying adversarial
attack. The runtime overhead of ELLE-A, which is slightly smaller than
MTL-IBP and Exp-IBP, and significantly larger than ForwAbs on an
Nvidia GTX 1080Ti GPU, is reported in Figure 4.10d. While the original
work [7] reports less overhead for ELLE-A, which requires 3 batched
forward passes to compute its regularization term, we found its overhead
to be heavily dependent on the GPU model, with newer models leading
to a faster execution of the batched forward pass (the original work relies
on an Nvidia A100 SXM4 GPU). We tuned the ELLE-A hyper-parameter
𝜆ELLE, which controls the amount of regularization imposed on a notion
of local linearity proposed by the authors, consistently with the way
MTL-IBP, Exp-IBP and ForwAbs were tuned for Figure 4.8 and Figure
4.9. The tuning resulted in the following values: 𝜆ELLE = 6000 for CIFAR-
10 (which maximizes both the validation PGD-50 and AA accuracy),
𝜆ELLE = 3000 for CIFAR-100, and 𝜆ELLE = 1000 for SVHN.
As reported in Figure 4.10, ELLE-A prevents CO across all settings.
Remarkably, on CIFAR-10, certified training techniques match or outper-
form ELLE-A in AA accuracy for 𝜖 ≥ 20/255, with Exp-IBP outperforming
ELLE-A while also producing non-negligible certified robustness via
IBP. We believe this suggests that verifiability and empirical robustness
are not conflicting objectives in this setup. Furthermore, ForwAbs per-
forms at least competitively with ELLE-A on all the considered epsilons
while reducing its overhead. The situation is drastically different on
the harder CIFAR-100, where ELLE-A markedly outperforms certified
training schemes. We speculate the employed network may lack the

56 4 Certified Training for Empirical Robustness

12 16 20 24
Epsilon

0.00

0.05

0.10

0.15

0.20

0.25

0.30
AA

 A
cc

. &
 IB

P
Ac

cu
ra

cy
ELLE-A
ForwAbs
MTL-IBP
Exp-IBP

ELLE-A
ForwAbs
MTL-IBP
Exp-IBP

(a) CIFAR-10, AA (solid lines) and IBP accuracies (dashed).

12 16 20 24
Epsilon

0.04

0.06

0.08

0.10

0.12

0.14

AA
 A

cc
.

ELLE-A
ForwAbs
MTL-IBP
Exp-IBP

ELLE-A
ForwAbs
MTL-IBP
Exp-IBP

(b) CIFAR-100.

6 8 10 12
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

AA
 A

cc
ur

ac
y

ELLE-A
ForwAbs
MTL-IBP
Exp-IBP

ELLE-A
ForwAbs
MTL-IBP
Exp-IBP

(c) SVHN.

N-FGSM ForwAbs MTL-IBP Exp-IBP ELLE-A
80

100

120

140

160

180

200

220

Es
tim

at
ed

 e
po

ch
 ru

nt
im

e
[s

]

(d) Box plots (10 runs) for the CIFAR-10 training time of a single
epoch, estimated on a 80% subset of the training set.

Figure 4.10: Comparison of certified training techniques with ELLE-A [7], a the state-of-the-art regularizer for singe-step adversarial
training. Setup from Figure 4.8 and Figure 4.9. We report means over 5 repetitions and their 95% confidence intervals.

capacity to sustain tight over-approximations while preserving empirical
robustness. On SVHN, except MTL-IBP which fails owing to the sensi-
tivity of its loss as discussed in Section 4.3.2, all the algorithms attain
similar performance profiles, with the most robust algorithm depending
on the perturbation radius. Figure 4.11 reports the corresponding clean
accuracies: on average ELLE-A has less impact on clean accuracy than
certified training schemes, except for SVHN, where expressive losses
display larger standard performance, and on CIFAR-10 for 𝜖 = 24/255,
where ForwAbs does. In summary, we argue that, on easier datasets
such as CIFAR-10, certified training techniques such as Exp-IBP and
ForwAbs should be considered as strong baselines for CO prevention by
the single-step adversarial training community.

4.4 Bridging the Gap to Multi-Step Adversarial Training 57

12 16 20 24
Epsilon

0.3

0.4

0.5

0.6

0.7

Cl
ea

n
Ac

c.
ELLE-A
ForwAbs
MTL-IBP
Exp-IBP

ELLE-A
ForwAbs
MTL-IBP
Exp-IBP

(a) CIFAR10.

12 16 20 24
Epsilon

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Cl
ea

n
Ac

c.

ELLE-A
ForwAbs
MTL-IBP
Exp-IBP

ELLE-A
ForwAbs
MTL-IBP
Exp-IBP

(b) CIFAR-100.

6 8 10 12
Epsilon

0.84

0.86

0.88

0.90

0.92

0.94

Cl
ea

n
Ac

c.

ELLE-A
ForwAbs
MTL-IBP
Exp-IBP

ELLE-A
ForwAbs
MTL-IBP
Exp-IBP

(c) SVHN.
Figure 4.11: Clean accuracies for the ex-
periments reported in Figure 4.10

4.4 Bridging the Gap to Multi-Step Adversarial
Training

We here demonstrate that the gap between certified training techniques
based on single-step attacks and multi-step baselines can be reduced by
training on shallower networks and with longer schedules, in some set-
tings outperforming PGD-10 in empirical robustness without employing
an adversarial training component.

58 4 Certified Training for Empirical Robustness

12 16 20 24
Epsilon

0.00

0.05

0.10

0.15

0.20

0.25

0.30
AA

 A
cc

. &
 IB

P
Ac

cu
ra

cy

PGD-10
PGD-5
ForwAbs
Exp-IBP
N-FGSM

PGD-10
PGD-5
ForwAbs
Exp-IBP
N-FGSM

(a) CNN-7.

12 16 20 24
Epsilon

0.00

0.05

0.10

0.15

0.20

0.25

AA
 A

cc
. &

 IB
P

Ac
cu

ra
cy

PGD-10
PGD-5
ForwAbs
Exp-IBP
N-FGSM

PGD-10
PGD-5
ForwAbs
Exp-IBP
N-FGSM

(b) CNN-5.

Figure 4.12: When training CNN-7 and CNN-5 on CIFAR-10, ForwAbs and Exp-IBP prevent CO while displaying stronger empirical
robustness than PGD-5 for 𝜖 ≥ 20/255, and matching PGD-10 for CNN-5 at 𝜖 = 24/255. AutoAttack (solid lines) and IBP (dashed) accuracies
are reported (means and 95% CIs for 5 runs).
As seen in Table 4.1, CNN-7 features an IBP loss almost two orders of magnitude larger than CNN-5, explaining the qualitative differences
in this figure.

12 16 20 24
Epsilon

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

AA
 A

cc
.

PGD-10
PGD-5
ForwAbs
Exp-IBP
N-FGSM

PGD-10
PGD-5
ForwAbs
Exp-IBP
N-FGSM

(a) CNN-7.

12 16 20 24
Epsilon

0.05

0.06

0.07

0.08

0.09

0.10

0.11

AA
 A

cc
.

PGD-10
PGD-5
ForwAbs
Exp-IBP
N-FGSM

PGD-10
PGD-5
ForwAbs
Exp-IBP
N-FGSM

(b) CNN-5.

Figure 4.13: When training CNN-7 and CNN-5 for CIFAR-100, ForwAbs and Exp-IBP display better performance trade-offs than on the
deeper PreActResNet18 but still fail to improve on multi-step attacks. AutoAttack (solid lines) and IBP (dashed) accuracies are reported
(means and 95% CIs for 5 runs).

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’

[98]: Shi et al. (2021), ‘Fast Certified Ro-
bust Training with Short Warmup’

[104]: Mao et al. (2023), ‘TAPS: Connect-
ing Certified and Adversarial Training’

[105]: Müller et al. (2023), ‘Certified
Training: Small Boxes are All You Need’

4.4.1 Cyclic training schedule
Experimental setting We replicate the cyclic-schedule experiments
from Figure 4.8 and Figure 4.9 on two shallower networks without skip
connections. As in Figure 4.8 and Figure 4.9, 𝒙adv for certified training
methods is generated via N-FGSM. First, we consider CNN-7, a 7-layer
convolutional network from the certified training literature [8, 98, 104,
105]. Then, to study the impact of network depth, we also provide results
on a 5-layer version, named CNN-5.
We tune Exp-IBP and ForwAbs to maximize AA accuracy for 𝜖 = 24/255
on a validation set for each dataset and network, using the tuned value
for all considered 𝜖. As discussed in Section 4.3 and reported in Section
4.6.3 this negatively impact the networks standard performance: while
this is not the focus of these experiments, better robustness-accuracy
trade-offs may be obtained using different tuning criteria (see Section
4.6.1).

Results Figure 4.12 demonstrates that both ForwAbs and Exp-IBP
outperform PGD-5 in empirical robustness for 𝜖 ≥ 20/255 on both CNN
models, with ForwAbs preserving AA accuracy at lower epsilons, and
Exp-IBP attaining significant IBP accuracy (at least as large as PGD-5’s AA
accuracy for 𝜖 ≥ 20/255). The gap to PGD-10 is also significantly reduced
compared to the PreActResNet18 experiments, in spite of the significant
CO shown by N-FGSM, the attack employed within both Exp-IBP and
ForwAbs. Furthermore, as shown in Section 4.6.2, both Exp-IBP and
ForwAbs reduce runtime compared to PGD-5 and PGD-10. Remarkably,
on CNN-5, as shown in Figure 4.12b, Exp-IBP matches the performance
of PGD-10 for 𝜖 = 24/255, significantly outperforming N-FGSM, which

4.4 Bridging the Gap to Multi-Step Adversarial Training 59

[46]: Xu et al. (2020), ‘Automatic Per-
turbation Analysis for Scalable Certified
Robustness and Beyond’

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’

[105]: Müller et al. (2023), ‘Certified
Training: Small Boxes are All You Need’

does not suffer from CO in this setup. In order to prevent ForwAbs from
under-performing on CNN-5, we found it crucial to include sufficiently
low 𝜆 values in the tuning grid.
Finally, Figure 4.13 shows that, while the overall performance trade-offs
are greatly improved compared to PreActResNet18, Exp-IBP and For-
wAbs fail to improve on multi-step attacks on CIFAR-100 also on the
CNN architectures. We ascribe this to the larger number of classes, which
produce a less favorable trade-off between empirical and certified robust-
ness. Table 4.1 shows that the PreActResNet18 IBP loss at initialization
is more than a factor 1010 larger than on the CNN architectures, providing
an intuitive explanation for the different performance profiles.

4.4.2 Long training schedule
Experimental setting We now investigate whether certified training
schemes can be more beneficial under longer training schedules. The long
training schedule used for the experiments in Table 4.2 mirror a setup
from Shi et al. [98], widely adapted in the certified training literature [8,
104, 105]. Training is carried out for 160 epochs using the Adam optimizer
with a learning rate of 5× 10−4, decayed twice by a factor of 0.2 at epochs
120 and 140. Gradient clipping is employed, with the maximal ℓ2 norm
of gradients equal to 10. Training starts with an epoch of clean training
(“warm-up”). During epochs 1 to 81, the perturbation radius (regardless
of the computation it is employed for) is increased from 0 to its target
value using the SmoothedScheduler from Auto_LiRPA Xu et al. [46].
For Exp-IBP and IBP, we employ a specialized regularizer [98] for the
IBP bounds for the first 81 epochs (with coefficient 0.5 as done by the
original authors on CIFAR-10), as commonly done in previous work [8,
104, 105].
In order to show the benefits of tuning for each 𝜖, the hyperparameters
of Exp-IBP and ForwAbs (𝛼 and 𝜆, respectively) are tuned to maximize
validation AA accuracy individually on each setup considered in Table 4.2,
with the exception of 𝜖 = 16/255 CIFAR-10, which re-uses the values from
𝜖 = 24/255 to reduce computational overhead. As in Figure 4.8a to Figure
4.13, N-FGSM is used to generate 𝒙adv for Exp-IBP and ForwAbs, except for
"Exp-IBP PGD-5", which relies on PGD-5 instead. Noticing the beneficial
effect of large 𝛼 values, we also include pure IBP (𝛼 = 1), whose loss is
attack-free, in the comparison.

CIFAR-10 𝜖 = 8/255 CIFAR-10 𝜖 = 16/255 CIFAR-10 𝜖 = 24/255 CIFAR-100 𝜖 = 24/255

Method AA acc. [%] IBP acc. [%] AA acc. [%] IBP acc. [%] AA acc. [%] IBP acc. [%] AA acc. [%] IBP acc. [%]

Exp-IBP 38.44 ± 0.25 0.00 20.72 ± 1.54 20.55 ± 1.45 14.79 ± 1.61 14.74 ± 1.59 3.25 ± 0.44 3.14 ± 0.41
Exp-IBP PGD-5 16.45 ± 1.32 16.34 ± 1.29

IBP 29.43 ± 0.96 29.02 ± 0.96 21.72 ± 0.68 21.62 ± 0.68 16.73 ± 0.43 16.56 ± 0.42 3.78 ± 0.16 3.67 ± 0.16
ForwAbs 37.92 ± 0.08 0.00 17.61 ± 0.38 0.00 14.39 ± 0.16 0.46 ± 0.17 4.31 ± 0.05 0.00
PGD-10 40.14 ± 0.65 0.00 21.13 ± 0.60 0.00 15.14 ± 0.46 0.00 6.15 ± 0.16 0.00
PGD-5 37.32 ± 0.71 0.00 18.19 ± 0.32 0.00 11.47 ± 0.29 0.00 5.52 ± 0.18 0.00

N-FGSM 37.76 ± 0.30 0.00 7.13 ± 11.43 0.00 0.23 ± 0.64 0.00 0.02 ± 0.06 0.00

Table 4.2: When training CNN-7 with the
long training schedule, Exp-IBP consis-
tently improves on the average empirical
robustness of PGD-5 on CIFAR-10, with
IBP outperforming PGD-10 for 𝜖 ≥ 16/255.
Multi-step adversarial training displays
the best performance on CIFAR-100. Bold
entries indicate the best AA or IBP accu-
racy for each setting. Italics denote AA ac-
curacy improvements on PGD-5. Means
and 95% CIs for 5 runs are reported.

Results Table 4.2 shows that Exp-IBP outperforms PGD-5 on all consid-
ered CIFAR-10 setups. While empirical robustness is maximized when
the IBP accuracy is large on 𝜖 = 24/255, it is not the case for 𝜖 = 8/255. Re-
markably, pure IBP training outperforms all other methods for 𝜖 ≥ 16/255
on CIFAR-10. Exp-IBP PGD-5 demonstrates that on CIFAR-10 certified
training techniques can also improve robustness when applied on top of
multi-step attacks: this appears to be useful to improve performance when
single-step attacks systematically fail. While ForwAbs can significantly

60 4 Certified Training for Empirical Robustness

Table 4.3: Effect of model architecture on
AutoAttack accuracy on CIFAR-10 with
𝜖 = 24/255. Results from Figure 4.8a, Fig-
ure 4.12a, and Figure 4.12b (means and
standard deviations for 5 runs).

Architecture Exp-IBP AA acc. [%] ForwAbs AA acc. [%] PGD-5 AA acc. [%] PGD-10 AA acc. [%]

PreActResNet18 13.67 ± 1.30 12.92 ± 0.34 12.39 ± 0.96 15.83 ± 1.05
CNN-7 14.50 ± 0.81 14.98 ± 0.37 13.29 ± 0.37 16.03 ± 0.52
CNN-5 15.26 ± 0.35 14.36 ± 0.32 12.94 ± 0.23 15.28 ± 0.58

boost the empirical robustness of N-FGSM, it manages to outperform
PGD-5 only on CIFAR-10 with 𝜖 = 24/255. Finally, the long schedule does
not benefit certified training schemes on CIFAR-100, where their relative
performance compared to multi-step attacks remains unvaried compared
to the cyclic schedule, and for which we did not find the use of PGD-5 to
generate the attacks for Exp-IBP to be beneficial.

4.4.3 Effect of Model Architecture on Method Performance
Table 4.3 presents an analysis of the effect of model size on the
performance of both multi-step adversarial training and certified
training techniques, grouping in table form the results from Figure
4.8a, Figure 4.12a, and Figure 4.12b on CIFAR-10 with 𝜖 = 24/255.
Differently from results of the previous sections, where the focus
was on relative performance across methods, here we focus on the
impact of model architecture on the performance of each method. All
considered algorithms attain larger empirical robustness on CNN-7
compared to PreActResNet18. Remarkably, and differently from all the
other techniques, the AutoAttack accuracy of Exp-IBP is maximized on
CNN-5, suggesting that smaller networks may be particularly beneficial
to expressive losses under shorter training schedules.

4.5 Hyperparameters and scheduling
Table 4.4 summarizes the hyperparameters employed in all experi-
ments.
All the MTL-IBP and ForwAbs experiments with the short schedules
gradually increase both the method coefficient (respectively 𝛼 and 𝜆)
and the perturbation radius used to compute the IBP bounds (or their
proxy 𝜹̄𝑛) from 0 to their target value. We conduct an ablation study on
MTL-IBP in the context of the experiment from Figure 4.2.
Figure 4.14 studies the effect of scheduling (gradually increasing from 0
to their target value in 25 epochs) both 𝛼 and the perturbation radius 𝜖
employed to compute the IBP lower bounds 𝒍

𝐵(𝒙 ,𝜖),𝑦
𝑓𝜃

. Excluding trivial
outcomes, such as networks systematically outputting the same class, for
CC-IBP, MTL-IBP and SABR, we were unable to reach validation IBP loss
values below 44 without scheduling. The scheduling allows the use of
larger 𝛼 values, resulting in lower IBP loss value for CC-IBP, MTL-IBP

Table 4.4: Exp-IBP, MTL-IBP and For-
wAbs coefficients for figures 4.8 to 4.13,
figure 4.19, figure 4.20, and Table 4.2.

Experiment Exp-IBP 𝛼 MTL-IBP 𝛼 ForwAbs 𝜆̃

Figures 4.8a, 4.19a and 4.20a 2 × 10−2 1 × 10−8 1 × 10−24

Figures 4.9a, 4.19g and 4.20b 5 × 10−3 1 × 10−8 1 × 10−18

Figures 4.9b, 4.19c and 4.20c 2 × 10−3 2.75 × 10−15 1 × 10−23

Figures 4.12b, 4.19e and 4.20e 4 × 10−1 1 × 10−8

Figures 4.13b, 4.19e and 4.20g 2 × 10−3 1 × 10−10

Figures 4.12a, 4.19d and 4.20d 2 × 10−1 1 × 10−10

Figures 4.13a, 4.19f and 4.20f 2 × 10−3 1 × 10−12

Table 4.2, CIFAR-10, 𝜖 = 8/255 5 × 10−3 1 × 10−12

Table 4.2, CIFAR-10, 𝜖 = 24/255 and 𝜖 = 16/255 7.5 × 10−1 1 × 10−8

Table 4.2, CIFAR-100, 𝜖 = 24/255 7.5 × 10−1 1 × 10−8

4.6 Sensitivity Analysis and Performance Trade-Offs 61

[4]: Jorge et al. (2022), ‘Make Some Noise:
Reliable and Efficient Single-Step Adver-
sarial Training’

[98]: Shi et al. (2021), ‘Fast Certified Ro-
bust Training with Short Warmup’
[46]: Xu et al. (2020), ‘Automatic Per-

turbation Analysis for Scalable Certified
Robustness and Beyond’

and SABR: respectively from 56.47 to 24.06, from 44.50 to 9.89, and from
185.51 to 69.09. These improvements come with a slight decrease in
robustness to PGD-7 (a PGD attack with 7 steps). Nevertheless, CC-IBP,
MTL-IBP and SABR are unable to attain non-negligible certified accuracy
via IBP in this context. In view of these results, we employ the same
scheduling for ForwAbs.

5 10 15 20 25 30
Epochs

0.10

0.15

0.20

0.25

PG
D7

 A
cc

ur
ac

y

CC-IBP Sched.
MTL-IBP Sched.
SABR Sched.

CC-IBP
MTL-IBP
SABR

(a) Empirical accuracy under PGD7 attacks.

5 10 15 20 25 30
Epochs

101

102

103

IB
P

Lo
ss

CC-IBP Sched.
MTL-IBP Sched.
SABR Sched.

CC-IBP
MTL-IBP
SABR

(b) IBP loss.

Figure 4.14: Effect of scheduling the
bounding perturbation radius and 𝛼
on the IBP certified robustness at-
tained by CC-IBP, MTL-IBP and SABR
on the PreActResNet18 training setup
from Jorge et al. [4]. Validation results
on CIFAR-10 under perturbations of
𝜖 = 8/255. Hyperparameters are: 𝛼 = 0.1
for Exp-IBP, 𝛼 = 10−6 for CC-IBP and
MTL-IBP with scheduling, 𝛼 = 10−15 for
CC-IBP and MTL-IBP without schedul-
ing, 𝛼 = 10−4 for SABR with scheduling
and 𝛼 = 10−9 for SABR without schedul-
ing. They are chosen to reduce the IBP
loss as much as possible on the valida-
tion set.

The increase happens over the first 25 epochs for CIFAR-10 and CIFAR-100,
and over the first 12 epochs for SVHN. In particular, the value is increased
exponentially for the first 25% of the above epochs and linearly for the
rest [98], relying on the SmoothedScheduler from Auto_LiRPA [46]. The
radius used to compute the attack is kept consistent with the adversarial
training literature (that is, constant in all cases except for the first 5 epochs
on SVHN).

4.6 Sensitivity Analysis and Performance
Trade-Offs

We discuss in this section the main limitations of the proposed methods:
the sensitivity to the tuned coefficients associated with the losses, and the
trade-offs between empirical robustness and standard performance.

4.6.1 Sensitivity Analysis
This section presents a study of the test-set behavior of Exp-IBP and
ForwAbs for varying values of their coefficients (respectively 𝛼 and
𝜆) when training PreActResNet18 and CNN-7 with the cyclic schedule.
Figures 4.8a, 4.9a, 4.12a and 4.13a display results tuned to maximize
AA robustness on 𝜖 = 24/255. We here focus on 𝜖 = 20/255 to potentially
showcase different performance profiles, either in terms of maximizing
empirical robustness or in terms of trade-offs with standard accuracy.
For PreActResNet18, figure 4.15 shows that, on CIFAR-10, CO can be
mitigated without incurring a significant cost in standard performance.

62 4 Certified Training for Empirical Robustness

Figure 4.15: Sensitivity of Exp-IBP and
ForwAbs to their respective coefficients,
𝛼 and 𝜆, when training PreActResNet18
for ℓ∞ perturbations of 𝜖 = 20/255.
Plot 4.15c displays the legend for all
sub-figures, which log standard accuracy
(Clean), empirical robust accuracies to
PGD-50 and AutoAttack (AA), and IBP
verified robust accuracy on the standard
test sets.

0 10 4 10 3 10 2 10 1

Coefficient

0

10

20

30

40

50

60

Ac
cu

ra
cy

 [%
]

(a) Exp-IBP, CIFAR-10.

0 10 30 10 26 10 22

Coefficient

0

10

20

30

40

50

60

Ac
cu

ra
cy

 [%
]

(b) ForwAbs, CIFAR-10.

0 10 4 10 3 10 2

Coefficient

0

5

10

15

20

25

30

35

Ac
cu

ra
cy

 [%
]

Clean
PGD-50
AA
IBP

(c) Exp-IBP, CIFAR-100.

0 10 30 10 26 10 22 10 18

Coefficient

0

5

10

15

20

25

30

35

Ac
cu

ra
cy

 [%
]

(d) ForwAbs, CIFAR-100.

4: All timing measurements were car-
ried out on an Nvidia GTX 1080Ti GPU,
using 6 cores of an Intel Skylake Xeon
5118 CPU.

On the other hand, maximizing empirical robustness alone, especially
if with respect to AutoAttack accuracy, will result in a larger standard
performance drop: this is further highlighted by the clean accuracies
relative to figures 4.8 to 4.13 and Table 4.2, which are reported in Section
4.6.3. Stronger regularization is required on CIFAR-100, where low
coefficient values appear to be detrimental to robustness compared to
N-FGSM (corresponding to 𝛼 = 0 or 𝜆 = 0). Nevertheless, differently
from the results showed in Figure 4.9a, both Exp-IBP and ForwAbs can
improve on the average empirical robustness of N-FGSM, highlighting
their versatility and the potential advantages of per-instance tuning.
Figure 4.16 shows similar trends for CIFAR-10 on CNN-7, where however
both methods attain a larger AutoAttack accuracy, and at a smaller cost
in standard performance.

4.6.2 Training Overhead
Figure 4.8b shows the per-epoch training overhead of MTL-IBP, Exp-
IBP, ForwAbs, PGD-5 and PGD-10 with respect to N-FGSM (which
is used to compute the attack for MTL-IBP, Exp-IBP, ForwAbs) when
training a PreActResNet18 on 80% of the CIFAR-10 training set using
the cyclic schedule, complementing the information provided in Fig-
ure 4.4. As described in Section 4.1.3, ForwAbs has minimal overhead
with respect to N-FGSM. On the other hand, MTL-IBP and Exp-IBP
display a runtime slightly smaller than PGD-5. As expected, PGD-10
training requires almost twice the time as PGD-5, and more than half
the time as MTL-IBP and Exp-IBP. Figure 4.17, instead, plots the re-
spective training overheads when training CNN-7 and CNN-5 using the
cyclic schedule. The relative runtimes across methods remain similar to
PreActResNet18, with the runtime of each algorithm markedly smaller
on the CNN models, and for the 5-layer network. Differently from the ex-
periments in Section 4.3 and Section 4.4, all these runtime measurements
were carried out on the same machine under constant load. 4 Figure 4.18
explicitly plots trade-offs between runtime and empirical robustness. In
particular, figures 4.18a and 4.18c respectively plot the runtimes from

4.6 Sensitivity Analysis and Performance Trade-Offs 63

0 10 4 10 3 10 2 10 1

Coefficient

0

10

20

30

40

50

Ac
cu

ra
cy

 [%
]

(a) Exp-IBP, CIFAR-10.

0 10 17 10 13 10 9 10 5

Coefficient

0

10

20

30

40

50

Ac
cu

ra
cy

 [%
]

Clean
PGD-50
AA
IBP

(b) ForwAbs, CIFAR-10.

10 4 10 3 10 2

Coefficient

0

5

10

15

20

25

30

Ac
cu

ra
cy

 [%
]

(c) Exp-IBP, CIFAR-100.

0 10 19 10 15 10 11 10 7

Coefficient

0

5

10

15

20

25

30

Ac
cu

ra
cy

 [%
]

(d) ForwAbs, CIFAR-100.

Figure 4.16: Sensitivity of Exp-IBP and
ForwAbs to their respective coefficients,
𝛼 and 𝜆, on CNN-7 for ℓ∞ perturbations
of 𝜖 = 20/255 using the cyclic training
schedule. Plot 4.16b displays the legend
for all sub-figures.

ForwAbs MTL-IBP Exp-IBP IBP N-FGSM PGD-5 PGD-10

40

60

80

100

120

140

160

Es
tim

at
ed

 e
po

ch
 ru

nt
im

e
[s

]

(a) CNN-7.

ForwAbs MTL-IBP Exp-IBP N-FGSM PGD-5 PGD-10

20

30

40

50

60

70

Es
tim

at
ed

 e
po

ch
 ru

nt
im

e
[s

]

(b) CNN-5.

Figure 4.17: Box plots (10 repetitions) for
the CIFAR-10 training time of a single
epoch (using a 80% subset of the training
set) on CNN-7 and CNN-5.

figures 4.17a and 4.8b against the AA accuracies reported for CIFAR-10 at
𝜖 = 24/255 within figures 4.8a and 4.12a. Differently from the cyclic sched-
ule, the long schedule (160 epochs) used for the experiments of Table 4.2
does not have a constant training cost throughout the epochs (see Section

64 4 Certified Training for Empirical Robustness

[98]: Shi et al. (2021), ‘Fast Certified Ro-
bust Training with Short Warmup’

4.5): all methods start with a warm-up epoch that requires additionally
evaluating the network on clean inputs, and methods using IBP bounds
(Exp-IBP and IBP) employ the regularizer from Shi et al. [98] to control
the bounds in earlier epochs, increasing their overhead until epoch 81.
Figure 4.18b plots the AA accuracies for CIFAR-10 at 𝜖 = 24/255 from Table
4.2 against the per-epoch runtimes from Figure 4.17a for N-FGSM, PGD-5,
PGD-10 and ForwAbs (hence providing an estimate of long-schedule
runtime after warm-up, on 80% of the CIFAR-10 training set), and against
the per-epoch runtimes (also computed on 80% of the training set, after
warm-up) of Exp-IBP and IBP when the bounds regularizer is active.
Across the three setups, both ForwAbs and Exp-IBP consistently out-
perform PGD-5, with the former incurring a relatively small overhead
compared to N-FGSM. On the long schedule, IBP outperforms all the
other algorithms despite its low runtime, including the stronger multi-
step baseline PGD-10.

4.6.3 Clean Accuracies and IBP Losses

Table 4.5: Clean accuracies and IBP
losses for the experiments in Table 4.2.

Dataset 𝜖 Method Clean acc. [%] IBP loss

CIFAR-10

8
255

Exp-IBP 76.30 ± 0.43 (4.90 ± 0.55) × 104

IBP 39.37 ± 1.51 1.92 ± 0.01
ForwAbs 74.26 ± 0.28 (2.05 ± 0.11) × 104

PGD-10 77.07 ± 0.31 (9.79 ± 0.85) × 105

PGD-5 79.81 ± 0.38 (1.72 ± 0.11) × 106

N-FGSM 77.28 ± 0.26 (1.91 ± 0.14) × 106

16
255

Exp-IBP 31.30 ± 2.13 2.15 ± 0.02
IBP 31.65 ± 0.55 2.13

ForwAbs 46.54 ± 0.31 (7.72 ± 0.37) × 101

PGD-10 58.44 ± 0.24 (3.57 ± 0.33) × 105

PGD-5 64.07 ± 0.14 (1.01 ± 0.13) × 106

N-FGSM 62.38 ± 9.16 (2.93 ± 2.66) × 106

24
255

Exp-IBP 23.03 ± 4.97 2.25 ± 0.02
Exp-IBP PGD-5 27.32 ± 2.94 2.23 ± 0.02

IBP 23.51 ± 2.63 2.22 ± 0.01
ForwAbs 30.15 ± 0.37 8.73 ± 0.53
PGD-10 39.99 ± 0.60 (2.60 ± 0.42) × 104

PGD-5 49.31 ± 0.37 (2.13 ± 0.22) × 105

N-FGSM 57.46 ± 9.60 (3.31 ± 1.55) × 106

CIFAR-100 24
255

Exp-IBP 6.85 ± 1.29 4.49 ± 0.02
IBP 7.29 ± 0.61 4.45 ± 0.01

ForwAbs 16.85 ± 0.67 (5.79 ± 0.36) × 101

PGD-10 23.56 ± 0.61 (2.19 ± 0.19) × 105

PGD-5 28.53 ± 0.46 (6.12 ± 0.32) × 105

N-FGSM 29.07 ± 3.01 (6.50 ± 1.92) × 106

We here provide omitted clean accuracies and IBP losses for the experi-
ments for Figure 4.8 to Figure 4.13 and Table 4.2. Figure 4.19 provides
the results for the cyclic training schedule on PreActResNet18, CNN-7
and CNN-5. It is clear that the positive effects associated to the certified
training schemes (the mitigation or prevention of catastrophic overfitting
in Section 4.3 and the empirical robustness improvements detailed in
Section 4.4) come at a cost in clean accuracy, which is a limitation of these
methods and of enforcing low IBP loss. Generally speaking, as visible
in Figure 4.20, Exp-IBP attains significantly better trade-offs between

4.6 Sensitivity Analysis and Performance Trade-Offs 65

clean accuracy and IBP loss, especially when compared to MTL-IBP. As a
result, Exp-IBP is to be preferred if IBP accuracy is the primary metric.
Table 4.5 presents the clean accuracies and IBP losses pertaining to the
long schedule experiment from Table 4.2, additionally presenting a com-
parison between the IBP losses of the certified training schemes tuned
for empirical robustness and the adversarial training baselines whose
IBP loss was shown in Figure 4.1. In all cases, certified training schemes
decrease the IBP loss compared to the adversarial training baselines at
a cost in standard accuracy, with a larger cost associated to a greater
reduction in IBP loss. We conclude by pointing out that an alternative
tuning criterion (considering trade-offs between standard accuracy and
empirical robustness) could result in more favorable trade-offs. This was
not the focus of the presented experiments.

66 4 Certified Training for Empirical Robustness

Figure 4.18: Trade-offs between esti-
mated per-epoch runtime and AA ac-
curacy on CIFAR-10 for 𝜖 = 24/255.

40 60 80 100 120 140 160
Estimated runtime per epoch (s)

0.00

0.05

0.10

0.15

0.20

0.25

Au
to

At
ta

ck
 a

cc
ur

ac
y

N-FGSM
Exp-IBP
ForwAbs
PGD-5
PGD-10

(a) CNN-7, CIFAR-10, 𝜖 = 24/255, setup of Figure 4.12a.

40 60 80 100 120 140 160
Estimated runtime per epoch (s)

0.00

0.05

0.10

0.15

0.20

0.25

Au
to

At
ta

ck
 a

cc
ur

ac
y

N-FGSM
Exp-IBP
ForwAbs
PGD-5
PGD-10
IBP

(b) CNN-7, CIFAR-10, 𝜖 = 24/255, setup of Table 4.2

100 150 200 250 300 350 400 450
Estimated runtime per epoch (s)

0.00

0.05

0.10

0.15

0.20

0.25

Au
to

At
ta

ck
 a

cc
ur

ac
y

N-FGSM
Exp-IBP
ForwAbs
PGD-5
PGD-10
MTL-IBP

(c) PreactResNet18, CIFAR-10, 𝜖 = 24/255, setup of Figure 4.8a

4.6 Sensitivity Analysis and Performance Trade-Offs 67

12 16 20 24
Epsilon

0.3

0.4

0.5

0.6

0.7

Cl
ea

n
Ac

cu
ra

cy

PGD-10
PGD-5
ForwAbs

MTL-IBP
Exp-IBP
N-FGSM

PGD-10
PGD-5
ForwAbs

MTL-IBP
Exp-IBP
N-FGSM

(a) PreActResNet18, CIFAR-10.

12 16 20 24
Epsilon

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Cl
ea

n
Ac

cu
ra

cy

ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

(b) PreActResNet18, CIFAR-100.

6 8 10 12
Epsilon

0.84

0.86

0.88

0.90

0.92

0.94

Cl
ea

n
Ac

c.

ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

(c) PreActResNet18, SVHN.

12 16 20 24
Epsilon

0.2

0.3

0.4

0.5

0.6
Cl

ea
n

Ac
cu

ra
cy PGD-10

ForwAbs
Exp-IBP
N-FGSM

PGD-10
ForwAbs
Exp-IBP
N-FGSM

(d) CNN-7, CIFAR-10.

12 16 20 24
Epsilon

0.3

0.4

0.5

0.6

Cl
ea

n
Ac

c.

PGD-10
PGD-5
ForwAbs
Exp-IBP
N-FGSM

PGD-10
PGD-5
ForwAbs
Exp-IBP
N-FGSM

(e) CNN-5, CIFAR-10.

12 16 20 24
Epsilon

0.15

0.20

0.25

0.30

0.35

0.40

Cl
ea

n
Ac

cu
ra

cy

PGD-10
ForwAbs
Exp-IBP
N-FGSM

PGD-10
ForwAbs
Exp-IBP
N-FGSM

(f) CNN-7, CIFAR-100.

12 16 20 24
Epsilon

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Cl
ea

n
Ac

cu
ra

cy

PGD-10
ForwAbs
Exp-IBP
N-FGSM

PGD-10
ForwAbs
Exp-IBP
N-FGSM

(g) CNN-5, CIFAR-100.

Figure 4.19: Clean accuracies for the experiments from Figure 4.8, Figure 4.9, Figure 4.12, and Figure 4.13. Means and 95% confidence
intervals over 5 repetitions.

68 4 Certified Training for Empirical Robustness

12 16 20 24
Epsilon

100

101

102

103

104

105

106

107

108

IB
P

Lo
ss

ForwAbs
MTL-IBP
Exp-IBP

ForwAbs
MTL-IBP
Exp-IBP

(a) PreActResNet18, CIFAR-10.

12 16 20 24
Epsilon

102

103

104

105

106

IB
P

Lo
ss ForwAbs

MTL-IBP
Exp-IBP

ForwAbs
MTL-IBP
Exp-IBP

(b) PreActResNet18, CIFAR-100.

6 8 10 12
Epsilon

109

1010

1011

1012

IB
P

Lo
ss ForwAbs

MTL-IBP
Exp-IBP

ForwAbs
MTL-IBP
Exp-IBP

(c) PreActResNet18, SVHN.

12 16 20 24
Epsilon

101

102

103

IB
P

Lo
ss ForwAbs

Exp-IBP
ForwAbs
Exp-IBP

(d) CNN-7, CIFAR-10.

12 16 20 24
Epsilon

101IB
P

Lo
ss

ForwAbs
Exp-IBP
ForwAbs
Exp-IBP

(e) CNN-5, CIFAR-10.

12 16 20 24
Epsilon

103

104

IB
P

Lo
ss

ForwAbs
Exp-IBP
ForwAbs
Exp-IBP

(f) CNN-7, CIFAR-100.

12 16 20 24
Epsilon

102

IB
P

Lo
ss

ForwAbs
Exp-IBP
ForwAbs
Exp-IBP

(g) CNN-5, CIFAR-100.

Figure 4.20: IBP losses of methods from Section 4.1 for the experiments from Figure 4.8, Figure 4.9, Figure 4.12 and Figure 4.13. Means
and standard deviations over 5 repetitions. The significantly smaller IBP loss values associated with maximal AutoAttack accuracy come
at a larger cost in terms of empirical robustness, resulting in worse performance trade-offs.

4.7 Related work 69

[172]: Boopathy et al. (2021), ‘Fast Train-
ing of Provably Robust Neural Networks
by SingleProp’
5: described in Section 4.1.3
[40]: Singh et al. (2019), ‘An Abstract

Domain for Certifying Neural Networks’

[45]: Zhang et al. (2018), ‘Efficient Neural
Network Robustness Certification with
General Activation Functions’
[172]: Boopathy et al. (2021), ‘Fast Train-
ing of Provably Robust Neural Networks
by SingleProp’
[173]: De Bartolomeis et al. (2023), ‘How
robust accuracy suffers from certified
training with convex relaxations’
[99]: Gowal et al. (2018), ‘On the effec-

tiveness of interval bound propagation
for training verifiably robust models’

[174]: Mao et al. (2025), ‘CTBench: A Li-
brary and Benchmark for Certified Train-
ing’
[99]: Gowal et al. (2018), ‘On the effec-

tiveness of interval bound propagation
for training verifiably robust models’
[99]: Gowal et al. (2018), ‘On the effec-

tiveness of interval bound propagation
for training verifiably robust models’
[174]: Mao et al. (2025), ‘CTBench: A Li-
brary and Benchmark for Certified Train-
ing’
[41]: Ferrari et al. (2022), ‘Complete Ver-
ification via Multi-Neuron Relaxation
Guided Branch-and-Bound’
[173]: De Bartolomeis et al. (2023), ‘How
robust accuracy suffers from certified
training with convex relaxations’
[98]: Shi et al. (2021), ‘Fast Certified Ro-
bust Training with Short Warmup’
[79]: Croce and Hein (2020), ‘Reliable

evaluation of adversarial robustness with
an ensemble of diverse parameter-free
attacks’
[174]: Mao et al. (2025), ‘CTBench: A Li-
brary and Benchmark for Certified Train-
ing’
[4]: Jorge et al. (2022), ‘Make Some Noise:
Reliable and Efficient Single-Step Adver-
sarial Training’

[5]: Andriushchenko and Flammarion
(2020), ‘Understanding and Improving
Fast Adversarial Training’

[7]: Rocamora et al. (2024), ‘Efficient
local linearity regularization to overcome
catastrophic overfitting’
[99]: Gowal et al. (2018), ‘On the effec-

tiveness of interval bound propagation
for training verifiably robust models’

[174]: Mao et al. (2025), ‘CTBench: A Li-
brary and Benchmark for Certified Train-
ing’
[99]: Gowal et al. (2018), ‘On the effec-

tiveness of interval bound propagation
for training verifiably robust models’

4.7 Related work
In addition to the work discussed in background Chapter 2 we provide a
more detailed discussion of works related to this chapter.

4.7.1 SingleProp
Boopathy et al. [172] present SingleProp: a regularizer which, computed
at the cost of a single network evaluation and applied on top of the clean
network loss, trades certified robustness for computational efficiency.
ForwAbs 5, is a conceptually-simpler alternative to SingleProp, only
relying on a forward pass with the absolute weights of the network while
SingleProp combines their approximated bounds with heuristic inspired
from the verification literature [40, 45].
Furthermore, Boopathy et al. [172] focus on improving certified robustness
exclusively, while we employ ForWabs in the context of catastrophic
overfitting prevention and empirical robustness.

4.7.2 Empirical Robustness of Certified Training
Previous works have reported, explicitly or implicitly, on the empirical
robustness of certified training schemes deployed to maximize certified
robustness. Except for De Bartolomeis et al. [173], whose main conclusions
focus on the inferior empirical robustness of the certified training schemes
they considered compared to a multi-step baseline, complying with the
folklore in the area, empirical robustness was not the main focus of these
works.
While this was not the focus of their works, Gowal et al. [99] and Mao
et al. [174] both demonstrated that certified training schemes (including
IBP for Gowal et al. [99], IBP, SABR and MTL-IBP for [174]) outperform
multi-step adversarial training on large perturbation radii on MNIST for
relatively shallow convolutional networks. Specifically, Gowal et al. [99]
showed that IBP outperforms PGD-7 training in terms of PGD-200-10
(PGD with 200 iterations and 10 restarts) accuracy for 𝜖 ∈ {0.3, 0.4}, when
using a 100-epoch training schedule. Mao et al. [174] tuned the certified
training schemes to maximize certified robustness, and then positively
compared their empirical robustness, measured through the attacks
within MN-BAB, a complete verifier based on branch-and-bound [41],
to the AA accuracy of PGD-5-3 training for 𝜖 = 0.3 (using a 70-epoch
training schedule). Moreover, De Bartolomeis et al. [173] report that, on
MNIST, IBP [98] outperforms adversarial training based on a 10-step
AutoPGD [79] attack in terms of AA accuracy for 𝜖 ∈ {0.1, 0.2, 0.3, 0.4}.
However, they employ inconsistent training schedules and optimizers
across methods, and their adversarial training baseline severely under-
performs compared to other works [174]. We omit MNIST from our main
study owing to its relative simplicity, and to our focus on settings typically
considered in the single-step adversarial training literature [4, 5, 7].
Furthermore, Gowal et al. [99] and Mao et al. [174] reported that certified
training schemes (IBP for Gowal et al. [99], SABR and MTL-IBP for
[174]) can outperform multi-step attacks in terms of empirical robustness
using CNN-7 for 𝜖 = 8/255 on CIFAR-10. Gowal et al. [99] employ a 3200-
epoch training schedule, using which PGD-7 and IBP respectively attain
34.77% and 24.95% PGD-200-10 accuracy. Mao et al. [174] rely instead
on a 240-epoch schedule and again tune certified training schemes to
maximize certified robustness, reporting 35.93% AA accuracy for PGD-
10-3, 36.11% and 36.02% MN-BAB empirical robustness for SABR and
MTL-IBP, respectively. In addition, De Bartolomeis et al. [173] reports

70 4 Certified Training for Empirical Robustness

[99]: Gowal et al. (2018), ‘On the effec-
tiveness of interval bound propagation
for training verifiably robust models’
[174]: Mao et al. (2025), ‘CTBench: A Li-
brary and Benchmark for Certified Train-
ing’
[173]: De Bartolomeis et al. (2023), ‘How
robust accuracy suffers from certified
training with convex relaxations’
[98]: Shi et al. (2021), ‘Fast Certified Ro-
bust Training with Short Warmup’
[79]: Croce and Hein (2020), ‘Reliable

evaluation of adversarial robustness with
an ensemble of diverse parameter-free
attacks’
[174]: Mao et al. (2025), ‘CTBench: A Li-
brary and Benchmark for Certified Train-
ing’
[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’

[79]: Croce and Hein (2020), ‘Reliable
evaluation of adversarial robustness with
an ensemble of diverse parameter-free
attacks’

[125]: Jovanović et al. (2022), ‘On the
Paradox of Certified Training’

[98]: Shi et al. (2021), ‘Fast Certified Ro-
bust Training with Short Warmup’

[99]: Gowal et al. (2018), ‘On the effec-
tiveness of interval bound propagation
for training verifiably robust models’

[107]: Zhang et al. (2020), ‘Towards Sta-
ble and Efficient Training of Verifiably
Robust Neural Networks’
[105]: Müller et al. (2023), ‘Certified

Training: Small Boxes are All You Need’
[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’
[6]: Wong et al. (2020), ‘Fast is better than
free: Revisiting adversarial training’

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’
6: except on CIFAR-10 with 𝜖 = 2/255,
for which De Palma et al. [159] use a
multi-step attack.
[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’

better AA accuracy for IBP [98] (32.5%), using a 160-epoch schedule,
compared to 10-step AutoPGD [79] (30.2%) on CIFAR-10 for 𝜖 = 8/255
using a residual network. However, as for their MNIST experiments, the
comparison employs different training schedules and optimizers for the
various methods, and features an empirically weak adversarial training
baseline. We remark that N-FGSM already attains 37.76% average AA
accuracy using the same network architecture in Table 4.2, outperforming
the results reported above for both adversarial and certified training,
and highlighting the importance of strong baselines and appropriate
regularization. In fact, differently from Mao et al. [174], who adopt ℓ1
regularization also for the adversarial training baselines, we use weight
decay (with coefficient 5 × 10−5), which is more commonly adopted in
the adversarial training literature to combat robust overfitting.
Given the gap between the best empirical and certified defenses across
various setups [8, 79, 125], certified training schemes are commonly
understood to be at odds with empirical accuracy. Expanding on the
above results and complementing Section 4.3, Section 4.4 studies whether
techniques from Section 4.1.2, when explicitly tuned for the purpose, can
improve empirical robustness compared to multi-step PGD on larger
perturbation radii, different datasets, and shorter training schedules.

4.7.3 Catastrophic Overfitting in Certified Training Setups

The strong certified robustness results reported in previous work can be
employed to draw conclusions on catastrophic overfitting, exploiting the
fact that certified accuracy lower bounds the empirical accuracy to any
attack. It is easy to conclude that any certified training scheme which
lacks an adversarial training component (see Section 2.2.3) is trivially
immune to CO [98, 99, 107]. Nevertheless, these are neither applicable
in all training contexts (see Section 4.1.2) nor necessarily associated to
the best performance [105]. For 𝛼 < 1 tuned for certified robustness via
verifiers based on branch-and-bound, the results reported in [8] imply
the absence of CO on the relative CC-IBP, MTL-IBP and Exp-IBP runs.
As reported by De Palma et al. [8, appendix G.9], this is in spite of the
fact that they rely on a randomized attack that always lands on a corner
of the perturbation region and was shown to display CO by previous
work in a different experimental setup [6]. Nevertheless, it is unclear
from the original experiments whether 𝛼 = 0 would display CO for those
experimental settings and, hence, whether expressive losses prevent
it. Fully demonstrating that the reported results imply the ability of
expressive losses to prevent CO requires showing that the underlying one-
step attack (𝛼 = 0) would display CO in the specific experimental setting.
We here carry out such investigation, whose results are provided in Table
4.6. In particular, we compare the average AutoAttack accuracy from
RS-FGSM 𝜂 = 10.0𝜖, the one-step attack employed in most expressive
loss results from De Palma et al. [8]6 with the best AutoAttack accuracy
obtained from the published expressive losses checkpoints from De Palma
et al. [8]. Table 4.6. shows that the one-step attack displays systematic CO
on MNIST with 𝜖 = 0.3 and on CIFAR-10 with 𝜖 = 8/255, and some signs of
CO on MNIST with 𝜖 = 0.1. In all cases, this is effectively prevented by the
expressive losses runs from the literature. Nevertheless, mirroring what
is outlined in Section 4.7.2, we point out that the empirical robustness
of literature models is still disappointing if compared with stronger
one-step baselines. For CIFAR-10 with 𝜖 = 8/255, N-FGSM attains 37.76%
average AA accuracy on the same network (Table 4.2).
In Section 4.3, we systematically investigate CO on settings popular in
the relevant single-step adversarial training literature: deeper networks,

4.8 Conclusion 71

MNIST 𝜖 = 0.1 MNIST 𝜖 = 0.3 CIFAR-10 𝜖 = 2/255 CIFAR-10 𝜖 = 8/255 TinyImageNet 𝜖 = 1/255

Method AA acc. [%] AA acc. [%] AA acc. [%] AA acc. [%] AA acc. [%]

RS-FGSM 𝜂 = 10.0𝜖 83.84 ± 39.02 0.00 74.46 ± 0.44 0.00 28.92 ± 0.17
Best Expressive Loss 98.48 94.02 69.33 36.50 28.46

Table 4.6: CO study on CNN-7 setups
from the certified training literature. We
report mean and 95% over 5 runs for the
one-step attack used in most expressive
loss results from De Palma et al. [8], and
compare it with the best AutoAttack accu-
racy across the relative published CC-IBP,
MTL-IBP and Exp-IBP checkpoints [8].

[79]: Croce and Hein (2020), ‘Reliable
evaluation of adversarial robustness with
an ensemble of diverse parameter-free
attacks’

[174]: Mao et al. (2025), ‘CTBench: A Li-
brary and Benchmark for Certified Train-
ing’

different underlying attacks and datasets, shorter training schedules, and
larger perturbation radii.

4.7.4 Comparison with our work
Differently from the previous literature, this work, in Section 4.3, presents
a systematic analysis of the ability of certified training schemes to prevent
CO on setups from the single-step adversarial training literature, and
in Section 4.4 extends the study by examining settings where certified
training schemes relying on single-step attacks can overcome multi-step
attacks.
Owing to the strong sensitivity of CO and of expressive losses (see Table
4.1) to the specific experimental setup, the conclusions in Section 4.3 do
not trivially follow neither from the previous literature, nor from our
study in Section 4.7.3. For instance, Figure 4.12 shows that the occurrence
of CO depends on the network architecture even for the same training
schedule, dataset, and perturbation radius, and a comparison with Table
4.2 illustrates the effect of changes in the training schedule. Compared
to the literature discussed in Section 4.7.2, Section 4.4 provides a fair
and systematic comparison (relying on the same strong attack suite [79],
which is also used as tuning metric on validation) which includes larger
perturbation radii (up to 𝜖 = 24/255), the harder CIFAR-100 dataset, and a
shorter cyclic training schedule more common in the adversarial training
literature.
Crucially, throughout Section 4.4, rather than simply assessing the ro-
bustness of certified training schemes deployed to maximize certified
robustness, we also tune these algorithms for empirical robustness. This
can make a difference in practice. For instance, Exp-IBP attains 38.44%
average AA accuracy in our experiments for 𝜖 = 8/255 with 𝛼 = 5 × 10−3

on CIFAR-10, outperforming N-FGSM and PGD-5 from Table 4.2, the
results from Table 4.6 with 𝛼 = 0.5, and all values reported by Mao et al.
[174].

4.8 Conclusion
We presented a comprehensive empirical study on the utility of recent
certified training techniques for empirical robustness, as opposed to
verifiability, their original design goal. In particular, we showed that
Exp-IBP can prevent catastrophic overfitting on single-step attacks for a
variety of settings, outperforming some multi-step baselines in a subset
of these. Furthermore, we presented a conceptually simple regularizer
on the size of network over-approximations, named ForwAbs, that can
achieve similar effects to Exp-IBP on top of single-step attacks while
cutting down its overhead. While we believe that these results highlight
the potential of certified training as an empirical defense, they also show
the severe limitations of current techniques on harder datasets, ultimately
calling for the development of better certified training algorithms.

[175]: Marques-Silva (2022), ‘Logic-
Based Explainability in Machine Learn-
ing’
[71]: Wu et al. (2023), ‘VeriX: Towards

Verified Explainability of Deep Neural
Networks’

[72]: Bassan and Katz (2023), ‘Towards
Formal XAI: Formally Approximate Min-
imal Explanations of Neural Networks’

[176]: Wu et al. (2024), ‘Better Verified
Explanations with Applications to Incor-
rectness and Out-of-Distribution Detec-
tion’

[177]: Doncenco et al. (2025), ‘A Dive
into Formal Explainable Attributions for
Image Classification’

[178]: Izza et al. (2024), ‘Distance-
restricted explanations: theoretical un-
derpinnings & efficient implementation’

Certified Training for Formal
Explainability 5

5.1 Formal explainability . . 73
5.1.1 Feature attribution meth-

ods 73
5.1.2 Formally robust explana-

tions 74
5.1.3 Computing formal expla-

nations 75
5.1.4 Limits of optimal robust

explanations 76
5.1.5 Using incomplete but

sound verifiers 77
5.1.6 Empirically formally

explainable models 78
5.2 Training for Formal

Explainability 78
5.2.1 Feature Subset Certified

Training (FSCT) 78
5.3 Traversal orders 80
5.3.1 Existing orders 80
5.3.2 Linear Coefficients as

traversal order 81
5.3.3 Complexity of the different

traversal orders 81
5.4 Experimental results . . . 82
5.4.1 Dichotomy search for

irrelevant features 82
5.4.2 Traversal orders compari-

son 83
5.4.3 Scalable formal explana-

tions on CIFAR-10 85
5.4.4 Scalable formal explana-

tions on TinyImageNet . . 87
5.5 Related work 89
5.6 Conclusion and future

work 91

Formal explainability is an active research area [175], with scalability as
one of its main challenges. Prior works [71, 72, 176–178] have addressed
this by improving explanation algorithms. Inspired by advances in
certified training for verifiable robustness [8, 99, 179–181] and empirical
robustness, discussed in Chapter 4, we instead aim to improve scalability
by training models that are easier to explain formally.
To align with formal explanation definitions, we introduce Feature
Subset Certified Training (FSCT), which trains models under partial
perturbations restricted to subsets of input features. We evaluate and
compare the formal explainability of FSCT trained models not only by the
size of the explanations but also by the proportion of samples for which
the explanations are non-trivial. We also propose a new traversal order for
the VeriX algorithm [71] to compute formal explanations, extending the
heuristic of Chapter 3 to the ranking of features for formal explanations.
Preliminary results indicate that FSCT can improve the trade-off between
explanation size and the rate of empirically 𝜖-formally explainable inputs
compared to other robust training methods.

5.1 Formal explainability
We have until now focused on the question of robustness (empirical or
verifiable) of neural networks. We now turn to another important aspect
of trustworthy AI: explainability. The goal of the field of explainable AI
(XAI) is to provide human-interpretable explanations of the decisions
of a model. The field is vast, we refer to Molnar [182] for a general
introduction to the field or Mersha et al. [183] for a survey on the topic.
We focus in this chapter on the problem of finding the most relevant
features for the decision of a trained neural network 𝑓𝜃 on a given input
𝒙. The family of XAI methods in this setting is the family of post-hoc
methods, computing local explanations: they are applied on trained
models and on a single input sample.
We first present briefly some of the existing heuristic methods for feature
attribution and then focus on the recent line of work on formally robust
explanations. After introducing the relevant definitions and the VeriX
algorithm [71] to compute them, we discuss their limits and the need for
assessing the (empirical) formal explainability of models.

5.1.1 Feature attribution methods
Throughout this chapter we consider 𝑓𝜃 : ℝℎ×𝑤×𝑐 → ℝ𝐾 a neural
network trained on samples (𝒙 , 𝑦) ∼ D with D a multi-class image
classification dataset. Given an input sample 𝒙 ∈ ℝℎ×𝑤×𝑐 the model
outputs a vector of logits 𝑓𝜃(𝒙) ∈ ℝ𝐾 . The predicted label is given by
𝑦pred = argmax𝑘 𝑓𝜃(𝒙)[𝑘].

Remark 5.1.1 (Input features) For explanations of images the input
features are often considered spatially (e.g. points or subsets in a ℎ ×𝑤
grid) but aggregated across channels. In this case the feature space
(from an explanation point of view) is of dimension 𝑑 = 𝑤 × ℎ for
an image of width 𝑤 and height ℎ, independently of the number of

74 5 Certified Training for Formal Explainability

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’

[99]: Gowal et al. (2018), ‘On the effec-
tiveness of interval bound propagation
for training verifiably robust models’

[179]: Shi et al. (2021), ‘Fast certified
robust training with short warmup’

[180]: Mirman et al. (2019), ‘A Provable
Defense for Deep Residual Networks’

[181]: Müller et al. (2022), ‘The Third
International Verification of Neural Net-
works Competition (VNN-COMP 2022):
Summary and Results’
[71]: Wu et al. (2023), ‘VeriX: Towards

Verified Explainability of Deep Neural
Networks’
[182]: Molnar (2025), Interpretable Ma-

chine Learning

[183]: Mersha et al. (2024), ‘Explainable
artificial intelligence: A survey of needs,
techniques, applications, and future di-
rection’
[71]: Wu et al. (2023), ‘VeriX: Towards

Verified Explainability of Deep Neural
Networks’
[184]: Lundberg and Lee (2017), ‘A uni-
fied approach to interpreting model pre-
dictions’
[69]: Ribeiro et al. (2016), ‘" Why should
i trust you?" Explaining the predictions
of any classifier’
[66]: Sundararajan et al. (2017), ‘Ax-

iomatic attribution for deep networks’
[67]: Smilkov et al. (2017), SmoothGrad:

removing noise by adding noise

[185]: Selvaraju et al. (2017), ‘Grad-
CAM: Visual Explanations from Deep
Networks via Gradient-Based Localiza-
tion’
[186]: Bach et al. (2015), ‘On Pixel-Wise
Explanations for Non-Linear Classifier
Decisions by Layer-Wise Relevance Prop-
agation’
[187]: Springenberg et al. (2015), Striving

for Simplicity: The All Convolutional Net

[188]: Shrikumar et al. (2017), ‘Learning
important features through propagating
activation differences’
[189]: Ancona et al. (2018), ‘Towards

better understanding of gradient-based
attribution methods for Deep Neural Net-
works’
[190]: Narodytska et al. (2019), ‘Assess-
ing Heuristic Machine Learning Expla-
nations with Model Counting’

channels, even if in practice the model operates on a space of dimension
𝑤 × ℎ × 𝑐 with 𝑐 the number of channels.

Feature attribution methods assign a score to each feature of the input
sample 𝒙, representing its importance for the decision of the model 𝑓𝜃
on 𝒙. We briefly present some of the most popular feature attribution
methods.
SHAP [184] studies the problem under the scope of game theory and
proposes to approximate the Shapley values of the features. LIME [69]
proposes to fit a simple interpretable model (typically a linear model)
locally around the input sample 𝒙 and use the coefficients of this model
as feature importance scores. Integrated Gradients [66] compute the
average gradients of the model output with respect to the inputs along
a linear path from a baseline input (typically the zero vector) to the
input sample 𝒙. The gradients are then used as feature importance scores.
SmoothGrad [67] compute average gradients with respects to inputs
over samples obtained by adding small Gaussian noise to the input
𝒙. Grad-CAM [185] propose to use gradient with respects to the last
convolution layer, averaging them over the filters and upsampling to
the input dimension. Backpropagation methods, such as Layer-wise
Relevance Propagation [186], Guided Backpropagation [187] or DeepLift
[188], start from the output and use different rules to compute attributions
between consecutive layers through the network until reaching the input.
They have been shown to be equivalent to gradient-based methods
Ancona et al. [189] under some conditions.
All those methods are heuristic in nature and provide no guarantee on
the relations between the scores and the actual importance of the feature
for the decision of the model [190]. Evaluating and comparing them is an
open problem [191–193].

5.1.2 Formally robust explanations
To address this lack of guarantees, a line of work proposes to use formal
methods to classify features as relevant when they must remain fixed to
preserve the model’s decision, or irrelevant when any change in their
value does not alter that decision. Early works include Shih et al. [194],
who introduced the notion of prime implicant explanations for Bayesian
network classifiers, and Ignatiev et al. [195], who proposed computing
abductive explanations for neural networks with up to 20 neurons in a
single hidden layer with ReLU activations. A broader survey covering
models beyond neural networks can be found in Marques-Silva [175].
These works draw inspiration from propositional logic, where variables
not part of the explanations can take any boolean value. Applied to neural
networks, the irrelevant features can take any value in the network’s input
space, e.g. [0, 1] for scaled image inputs. This hinders the applicability of
such methods, as proving robustness when the perturbation space is the
entire input space is quite challenging.
To address this limitation, Huang and Marques-Silva [70] and Wu et al.
[71] propose distance-based formal explanations. In this setting, features
are deemed irrelevant if perturbing them within a ball of radius 𝜖 does
not change the model’s prediction. By connecting the problem of finding
𝜖-formal explanations to neural network verification, these methods
can leverage off-the-shelf verifiers. La Malfa et al. [196] adopt a similar
approach for NLP models, where the perturbation space is defined as a
bounded box enclosing word embeddings rather than a ball.
We present here in particular the formalism and the algorithm of Wu
et al. [71], which form the basis of our approach.

5.1 Formal explainability 75

[191]: Adebayo et al. (2018), ‘Sanity
checks for saliency maps’

[192]: Xu-Darme et al. (2023), ‘On the
stability, correctness and plausibility of
visual explanation methods based on
feature importance’

[193]: Hedström et al. (2023), ‘The
Meta-Evaluation Problem in Explainable
AI: Identifying Reliable Estimators with
MetaQuantus’

[194]: Shih et al. (2018), ‘A symbolic ap-
proach to explaining bayesian network
classifiers’
[195]: Ignatiev et al. (2019), ‘Abduction-
based explanations for machine learning
models’

[175]: Marques-Silva (2022), ‘Logic-
Based Explainability in Machine Learn-
ing’
[70]: Huang and Marques-Silva (2023),

‘From Robustness to Explainability and
Back Again’
[71]: Wu et al. (2023), ‘VeriX: Towards

Verified Explainability of Deep Neural
Networks’
[196]: La Malfa et al. (2021), ‘On Guar-

anteed Optimal Robust Explanations for
NLP Models’
More specifically, Bassan et al. [197] show
that for a boolean feature space: 𝒙 ∈
{0, 1}𝑑 there exists 𝑓𝜃 and 𝒙 such that

there are Θ(2𝑑√
𝑑
) subset minimal robust

explanations. The statement also holds
for the number of cardinally-minimal
robust explanations.

[147]: Katz et al. (2019), ‘The Marabou
Framework for Verification and Analysis
of Deep Neural Networks’

Definition 5.1.1 (𝜖-formally robust explanations) Given a sample

(𝒙 , 𝑦) ∼ D, a neural network 𝑓𝜃 and a perturbation budget 𝜖 > 0, ir-
relevant features are a subset of features of 𝒙, indexed by a subset I ⊆ J𝑑K
such that any perturbation of 𝒙[I]1

1: If 𝒙 is an image with width 𝑤 and
height ℎ, the feature space is of dimen-
sion 𝑑 = 𝑤 × ℎ. The perturbations are
applied across all channels.

does not alter the classification of 𝑓𝜃 on

𝒙. More formally:

∀𝒙′, ∥𝒙′[I] − 𝒙[I]∥ < 𝜖 ∧ 𝒙′[I 𝑐] = 𝒙[I 𝑐]
⇒ argmax

𝑘

𝑓𝜃(𝒙′)[𝑘] = argmax
𝑘

𝑓𝜃(𝒙)[𝑘]. (5.1)

I is said to be subset-optimal if allowing to perturb any additional feature

makes it possible to find a perturbation successfully changing the decision of

the network:

∀𝑖′ ∈ I 𝑐 , ∃𝒙′ : ∥𝒙′[I ∪ {𝑖′}] − 𝒙[I ∪ {𝑖′}]∥ ≤ 𝜖∧
𝒙′[{I ∪ {𝑖′}}𝑐] = 𝒙[{I ∪ {𝑖′}}𝑐]∧
argmax

𝑘

𝑓𝜃(𝒙′)[𝑘] ≠ argmax
𝑘

𝑓𝜃(𝒙)[𝑘]. (5.2)

Given a set I of irrelevant features its complement R = J𝑑K \ I is a 𝜖-
formally robust explanation. Furthermore, we say that R is a minimal

explanation if I is maximal.

Intuitively, R represents the sufficient set of features explaining the
decision of 𝑓𝜃, since perturbing all other features does not affect it.
Multiple subset-minimal robust explanations may exist for a given
sample 𝒙, and in the worst case, their number can grow exponentially
with the input dimension [197].

Remark 5.1.2 (Empty explanations) If 𝑓𝜃 is robust over the entire 𝜖-ball
centered at 𝒙 (i. e., I = J𝑑K), then all features are irrelevant, and the
corresponding explanation is empty: R = ∅.

5.1.3 Computing formal explanations

The definition of irrelevant features in Eq. (5.1) corresponds to a local
robustness property, similar to Definition 2.2.2, except that the allowed
perturbations are restricted to a subset of features. Irrelevant features can
be computed using an off-the-shelf verifier.
The VeriX algorithm, introduced by Wu et al. [71], computes subset-
minimal explanations using a greedy approach and the verifier
Marabou [147]. The procedure is summarized in Algorithm 1.
The algorithm employs three sub-routines: TraversalOrder, Perturb,
and Verify. TraversalOrder relies on heuristics to estimate the influence
of each input feature on the output 𝑓𝜃(𝒙) and returns the features ordered
by their estimated importance. Formally 𝜎 is a permutation of (0, . . . 𝑑−1).
While VeriX is guaranteed to return a subset-maximal set of irrelevant
features, its size depends on the ordering 𝜎. An effective heuristic for
TraversalOrder should yield irrelevant sets of large cardinality. We
discuss in Section 5.3 different algorithms from the literature, and our
own proposed ordering, inspired by the ReCIPH heuristic from Chapter
3.
Perturb instantiates the set 𝜙 of allowed perturbations at every step:

Perturb(𝒙 , S , 𝜖) := {𝒙′ : ∥𝒙′[S] − 𝒙[S]∥ < 𝜖 ∧ 𝒙′[S 𝑐] = 𝒙[S 𝑐]} (5.3)

76 5 Certified Training for Formal Explainability

1 Input: 𝒙, 𝜖, 𝑓𝜃
2 Output: I, R
3

4 I ← ∅, R← ∅
5 𝜎← TraversalOrder(𝑓𝜃 , 𝒙)
6 𝑦pred ← argmax𝑘 𝑓𝜃(𝒙)[𝑘]
7 for i in 𝜎 do
8 𝜙← Perturb(𝒙 , I ∪ {𝑖}, 𝜖)
9 res ← Verify(𝜙, 𝑓𝜃 , 𝑦pred)

10 if res then
11 I ← I ∪ {𝑖}
12 else
13 R← R ∪ {𝑖}
14 end if
15 end for
16

17 return I, R
18

Algorithm 1: VeriX algorithm to compute subset-minimal robust explanations.

2: Notice that the verification query is
slightly different from classically veri-
fying local robustness: we do not con-
sider the true label 𝑦 but rather the pre-
dicted label 𝑦pred = argmax𝑘 𝑓𝜃(𝒙)[𝑘].
Even when the model misclassifies the
inpu, we want to explain its decision.

3: The models adversarially trained and
even some of the models trained with
certified training in Mao et al. [174] have
more than 99% accuracy, up to 99.58%.

with S = I ∪ {𝑖} the union of the set of previously proven irrelevant
features I with the current candidate feature {𝑖}.
Finally, Verify takes a set of perturbations, a model 𝑓𝜃 and its predicted
label2, and returns True if no perturbation changes the classification of
𝑓𝜃 and False otherwise.
Now that we have an algorithm to compute formal explanations we can
define a notion of formally explainable models.

Definition 5.1.2 (𝜖-formally explainable) Let 𝑓𝜃 be a neural network

with parameters 𝜃, and 𝒙 ∼ D ∈ ℝ𝑑
a sample with predicted label 𝑦pred =

argmax𝑘 𝑓𝜃(𝒙)[𝑘]. Let 𝜖 > 0 be a perturbation budget and 𝜎 an ordering of

the input features.

We say that 𝑓𝜃 is 𝜖-formally explainable for the input 𝒙 if VeriX returns a

set of irrelevant features I such that 0 < |I| < 𝑑.

Given some perturbation budget 𝜖, the explainability of a model can be
evaluated both by the average size of the explanations and by the number
of samples for which the model is formally explainable. Changing 𝜖 is
tempting as lowering it makes the verification easier and should lead to
larger sets of irrelevant features. However, we will see in Section 5.4.3
that it can lead to poor explainability in practice due to the larger number
of non 𝜖-formally explainable samples.

5.1.4 Limits of optimal robust explanations

The problem of verifying the local robustness of neural networks has
been shown to be NP-Hard for feedforward models with ReLU activation
functions [134]. The implementation of Verify in VeriX uses the verifier
Marabou [198], which is capable of checking whether such properties
hold. For a 𝑑-dimensional feature space, 𝑑 calls to Verify are necessary.
This greatly limits the scalability of VeriX. The network evaluated in Wu
et al. [176] has 10 hidden neurons and a test accuracy of 92.26% on the
MNIST dataset where models now easily achieve accuracy greater than
99%.3 The perturbation budget used (𝜖 = 0.05) is also much lower than
those typically used in robustness work (𝜖 ∈ {0.1, 0.3}).
Our goal in this work is to scale formal explanations to large neural
networks with perturbation budgets 𝜖 comparable to those employed in
the robustness literature.

5.1 Formal explainability 77

VeriX does not scale in such a setting. In fact, the underlying solver
Marabou [176] fails to parse the CNN-7 network used commonly in the
certified training literature.

5.1.5 Using incomplete but sound verifiers

1 Input: 𝒙, 𝜖, 𝑓𝜃
2 Output: I, R, U
3

4 I ← ∅, R← ∅, U ← ∅
5 𝜎← TraversalOrder(𝑓𝜃 , 𝒙)
6 𝑦pred ← argmax𝑘 𝑓𝜃(𝒙)[𝑘]
7 for i in 𝜎 do
8 𝜙← Perturb(𝒙 , I ∪ {𝑖}, 𝜖)
9 res ← Verify(𝜙, 𝑓𝜃 , 𝑦pred)

10 if res is True then
11 I ← I ∪ {𝑖}
12 elseif res is False then
13 R← R ∪ {𝑖}
14 else # res is unknown

15 U ← U ∪ {𝑖}
16 end if
17 end for
18

19 return I, R, U

Algorithm 2: VeriX-incomplete

A straightforward way to improve the scalability of VeriX is to use
a faster, sound but incomplete verifier for the Verify procedure. Many
approaches have been proposed to improve the scalability of neural
network verification such as the linearization techniques discussed in
Section 2.4. When the Verify call neither proves nor falsifies the property,
it can now return unknown and a corresponding set U is maintained and
returned at the end of the algorithm. The modifications of VeriX are
shown in blue in Algorithm 2. This version of the algorithm remains
sound: no perturbation of features in I will change the decision of 𝑓𝜃. I
is now not necessarily minimal, but it provides a lower bound on the
maximal set of irrelevant features, given an ordering 𝜎:

Proposition 5.1.1 Let 𝑓𝜃 be a neural network, 𝒙 ∼ D a sample, 𝜖 > 0 a

perturbation budget. If VeriX-incomplete returns a set I of irrelevant features

and VeriX returns a set I′ of irrelevant features, using the same ordering
𝜎, we have:

|I| ≤ |I′| (5.4)

In fact we have:

I ⊆ I′ (5.5)

Directly using such an approach provides limited information on stan-
dard networks. Linearization techniques are not precise enough to assess
the robustness when using perturbation budgets 𝜖 typically used in the
robustness literature.
Another limit of this approach is the difficulty to find counterfactuals. At
the end of the execution of VeriX-incomplete, the set U contains features
that could not be proven irrelevant but the set of relevant features R
remains empty. Linearization techniques are not precise enough to prove
the entire perturbed space leads to a different decision. Attempting to
find counterexamples using adversarial attacks also fails: the search space
is constrained to a subspace of the entire feature space (I ∪ {𝑖}) where

78 5 Certified Training for Formal Explainability

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’

all but one feature were already proven to be irrelevant.
We introduce in Section 5.2, a training procedure to enable the use of
incomplete verifiers based on over-approximations and bound propa-
gation. While it improves the number of verifiably irrelevant features,
proving features to be relevant remains intractable. We now describe
the notion of empirically formally explainable models to evaluate the
explainability of a model in a practical setting.

5.1.6 Empirically formally explainable models
The motivation to induce some robustness at training time to produce
formally explainable models is clear from the definition of formal expla-
nations(see Definition 5.1.1). However, the risk is to obtain models that
cannot be assessed to be 𝜖-formally explainable (Definition 5.1.2) as we
are restricted to incomplete verifiers for scalability reasons. We introduce
the following notion of empirically 𝜖-formally explainable models to
precise the explainability of a model 𝑓𝜃 on a dataset D with respect to a
perturbation budget 𝜖:

Definition 5.1.3 (Empirically 𝜖-formally explainable)The definition relies on the choice of the
adversarial attack generator. In practice,
we use AutoAttack [79], a family of strong
attacks used commonly in the robustness
literature. We emphasize that the attack
aims to find a perturbation successfully
changing the decision of the network,
even when the network prediction is not
the true label.

Let 𝑓𝜃 ∈ F be a

neural network, with F the family of classifier, and D ⊂ (X × Y) a dataset

for multi-class classification.

Let A : X × Y × F × ℝ+ → X be an adversarial attack generator:

A(𝒙 , 𝑦pred , 𝑓𝜃 , 𝜖) = 𝒙𝑎𝑑𝑣 ∈ 𝐵(𝒙 , 𝜖) is an adversarial perturbation of 𝒙
computed to change prediction 𝑦pred = argmax𝑘 𝑓𝜃(𝒙)[𝑘].

We say that 𝑓𝜃 is empirically 𝜖-formally explainable for the input 𝒙 and

the oracle A if the algorithm VeriX-incomplete returns a set of irrelevant

features I such that: 0 < |I| < 𝑑 and argmax𝑘 𝑓𝜃(𝒙𝑎𝑑𝑣)[𝑘] ≠ 𝑦pred.

Informally, 𝑓𝜃 being empirically 𝜖-formally explainable on 𝒙 for an
oracleAmeans that we know the set of irrelevant features is not trivial.
In particular, it cannot be full since we have found a perturbation
successfully changing the decision of 𝑓𝜃, implying the existence of
relevant features.

5.2 Training for Formal Explainability
We consider three training procedures to obtain empirically formally
explainable models: adversarial training, certified training using expres-
sive losses [8] and a novel training procedure we call Feature Subset
Certified Training (FSCT).

5.2.1 Feature Subset Certified Training (FSCT)
Motivated by the definition of irrelevant features in Definition 5.1.1, we
propose a training procedure that considers perturbations on a subset of

input features only.

Remark 5.2.1 (Relation to Expressive Losses) This notion of partial
robustness is different from the approach of SABR described in Section
2.3.1. SABR computes a subset of the perturbation space by considering a

ball with a smaller radius. Here we consider a subspace of the perturbation
space where some features are kept constant.

5.2 Training for Formal Explainability 79

We consider here the case where 𝑑 =

ℎ × 𝑤 × 𝑐 with 𝑐 = 1 for simplicity.
When 𝑐 > 1 the perturbations are ap-
plied across all channels.

In general the expressive losses can be seen as a different way of
loosening the certified robustness goal. We will show in Section 5.4
how they compare to FSCT for formal explainability.

Let D = {(𝒙(0) , 𝑦(0)) . . . (𝒙(𝑛−1) , 𝑦(𝑛−1))}, be a classification dataset with
𝒙(𝑖) ∈ ℝ𝑑, and 𝑦(𝑖) ∈ {0 . . . 𝐾 − 1} for all (𝒙(𝑖) , 𝑦(𝑖)) ∈ D.
We consider a sample 𝒙 ∈ ℝ𝑑, a perturbation budget 𝜖 > 0, a binary
mask 𝒎 ∈ {0, 1}𝑑 that represents a subset of perturbed features.

Definition 5.2.1 (Masked perturbation set) 𝑀(𝒙 ,𝒎 , 𝜖) ⊂ ℝ𝑑
is a subset

of ℝ𝑑
parametrized by 𝒙 ∈ ℝ𝑑

, 𝒎 ∈ {0, 1}𝑑 and 𝜖 > 0 defined as follows:

𝑀(𝒙 ,𝒎 , 𝜖) :=
{
𝒙′ ∈ ℝ𝑑 :

𝒙′[𝑖] = 𝒙[𝑖] if 𝒎[𝑖] = 1,
|𝒙′[𝑖] − 𝒙[𝑖]| ≤ 𝜖 if 𝒎[𝑖] = 0

}
. (5.6)

We define subset certified robustness similarly to Definition 2.2.3:

Definition 5.2.2 (Feature Subset Certified Robustness) A network 𝑓𝜃 is

said to be feature subset certifiably robust on an input sample (𝒙 , 𝑦) ∼ D
if and only if the difference between the ground-truth loit 𝑓𝜃(𝒙′)[𝑦] and the

other logits is positive for all 𝒙′ ∈ 𝑀(𝒙 ,𝒎 , 𝜖). We define the worst-case logit

difference on the masked pertubation set 𝑀(𝒙 ,𝒎 , 𝜖) as: We recall that
𝒛 𝑓𝜃 (𝒙 , 𝑦) := 𝑓𝜃(𝒙)[𝑦]− 𝒇𝜃(𝒙) is the vector
of logit differences.

𝒛
𝑀(𝒙 ,𝒎 ,𝜖),𝑦
𝑓𝜃

:= min
𝒙′∈𝑀(𝒙 ,𝒎 ,𝜖)

[
𝒛 𝑓𝜃 (𝒙′, 𝑦)

]
. (5.7)

𝑓𝜃 is feature subset certifiably robust on (𝒙 , 𝑦) if and only if:

∀𝑖 ≠ 𝑦, 𝒛
𝑀(𝒙 ,𝒎 ,𝜖),𝑦
𝑓𝜃

[𝑖] > 0. (5.8)

We can formulate a verified loss, given optimal bounds of the logit
differences on the masked perturbation set 𝑀(𝒙 ,𝒎 , 𝜖), 𝒛𝑀(𝒙 ,𝒎 ,𝜖),𝑦

𝑓𝜃
:

L𝐹𝑆𝐶𝑇(𝜃, 𝒙 , 𝑦,𝒎 , 𝜖) = L(−𝒛𝑀(𝒙 ,𝒎 ,𝜖),𝑦
𝑓𝜃

, 𝑦) (5.9)

where L is a standard classification loss such as the cross-entropy loss.
We can use bound propagation techniques to compute lower bounds
z𝑀(𝒙 ,𝒎 ,𝜖),𝑦
𝑓𝜃

, analogously to Section 2.2.3 of the worst-case logit differences

on the masked perturbation set 𝑀(𝒙 ,𝒎 , 𝜖): z𝑀(𝒙 ,𝒎 ,𝜖),𝑦
𝑓𝜃

≤ 𝒛
𝑀(𝒙 ,𝒎 ,𝜖),𝑦
𝑓𝜃

and
use them to define an approximated verified loss for feature subset
certified training:

Lver(𝜃, 𝒙 , 𝑦,𝒎 , 𝜖) = L(−z𝑀(𝒙 ,𝒎 ,𝜖),𝑦
𝑓𝜃

, 𝑦). (5.10)

This loss can be used in conjunction with an adversarial loss similarly
as the expressive losses discussed in Example 2.3.1. The adversary can
be computed using gradient-based attacks constrained to the masked
perturbation set 𝑀(𝒙 ,𝒎 , 𝜖).

Identifying the subsets to use during training A key component of
FSCT is the choice of the binary masks (i. e. the subsets) used to define
the masked pertubation set 𝑀(𝒙 ,𝒎 , 𝜖). We seek masks that:

▶ Select important features to be kept constant.

80 5 Certified Training for Formal Explainability

[65]: Simonyan et al. (2014), Deep Inside

Convolutional Networks: Visualising Image

Classification Models and Saliency Maps

[66]: Sundararajan et al. (2017), ‘Ax-
iomatic attribution for deep networks’

[67]: Smilkov et al. (2017), SmoothGrad:

removing noise by adding noise

If 𝜇 = 0 no feature is perturbed: the
model is trained normally. If𝜇 = 1 all fea-
tures are perturbed: the model is trained
using standard certified training.

We express 𝜇 as a percentage of the input
features.

4: Also called sensitiviy in Wu et al. [71]

[71]: Wu et al. (2023), ‘VeriX: Towards
Verified Explainability of Deep Neural
Networks’

5: Wu et al. [71] uses 1-𝒙[𝑖] for occlusion
on MNIST and 0 for other datasets.

▶ Do not destabilize the training dynamics.

Motivated by the works in the feature attribution literature [65–67]
we propose to rank the features using the input gradients of a model
computed at some epoch 𝜏, and select the top 𝑘 features to be kept
constant. For a vector 𝒗 = (𝑣1 . . . 𝑣𝑑) ∈ ℝ𝑑 and an integer 𝑘 ≤ 𝑑 we
denote by ArgBot𝑘(𝒗) the set of 𝑘 indices of the lowest components of
𝒗:

ArgBot𝑘(𝒗) := {𝑖1 . . . 𝑖𝑘} ⊆ J𝑑K such that: (5.11)
𝑣𝑖1 ≤ 𝑣𝑖2 ≤ · · · ≤ 𝑣𝑖𝑘 and (5.12)
𝑣 𝑗 ≥ 𝑣𝑖𝑘 for any 𝑗 ∉ {𝑖1 . . . 𝑖𝑘}. (5.13)

such that: 𝑣𝑖𝑘 ≤ 𝑣𝑖𝑘−1 ≤ · · · ≤ 𝑣𝑖1 and {𝑖1 . . . 𝑖𝑘} ⊆ J𝑑K.
To compute our mask we first average the absolute values of the input
gradients channel-wise, matching the definition of irrelevant features. If
𝑑 = ℎ × 𝑤 × 𝑐 we compute

𝒓 =
1
𝑐

𝑐∑
𝑐=1

����𝜕 𝑓𝜃(𝒙)[𝑦]𝜕𝒙:,:,𝑐

���� (5.14)

with 𝒙:,:,𝑐 ∈ ℝℎ×𝑤 the 𝑐-th channel of the input 𝒙. We then sort 𝒓 and
chose 𝑘 = ⌊𝜇 × 𝑑⌋. with 𝜇 ∈ [0, 1] a hyperparameter representing the
percentage of features to be perturbed. The mask 𝒎𝑥 is then defined
as:

𝒎𝑥[𝑖] =
{

1 if 𝑖 ∉ ArgBot𝑘(𝒓)
0 otherwise

(5.15)

To promote stable training we compute the gradients and the correspond-
ing masks at a given epoch 𝜏 and use them unchanged for the rest of the
training. 𝜏 should be chosen after a few epochs to let the model learn
some meaningful features but not too late to let the model adapt to the
partial robustness objective.
Two hyperparameters are thus introduced: 𝜏 the epoch when we compute
the masks, and 𝜇 the number of features to perturb.
Before showing the experimental results of FSCT in Section 5.4 we first
discuss the ordering procedure used in VeriX and VeriX-incomplete.

5.3 Traversal orders
The procedure TraversalOrder is a key component of VeriX and remains
crucial in VeriX-incomplete.
We first describe three traversal orders from the literature:

▶ Occlusion4

▶ IBP bounds
▶ Gradient.

5.3.1 Existing orders
Occlusion [71] The occlusion scores are defined as

𝜎𝑜𝑐𝑐𝑙(𝒙[𝑖]) = 𝑓𝜃(𝒙)[𝑦pred] − 𝑓𝜃(𝒙′)[𝑦pred] (5.16)

where 𝒙′ is the input 𝒙 with the feature 𝑖 occluded (set to 0 or to 1-𝒙[𝑖]
depending on the dataset ranges).5 The idea is to measure the impact of
occluding a feature on the logit of the predicted class.

5.3 Traversal orders 81

[176]: Wu et al. (2024), ‘Better Verified
Explanations with Applications to Incor-
rectness and Out-of-Distribution Detec-
tion’

The scores are then sorted in descending
order, unlike the other methods where a
low score means the feature is likely to
be irrelevant.
[177]: Doncenco et al. (2025), ‘A Dive

into Formal Explainable Attributions for
Image Classification’

The gradient based ordering is also called
Saliency.

IBP bounds [176] The idea is to compute an approximation of the lower
bound of the predicted logit when only perturbing a single pixel. If this
lower bound is high the feature is likely to be irrelevant as the predicted
logit remains high. The IBP bounds scores are formally defined as:

𝜎𝐼𝐵𝑃(𝒙[𝑖]) = 𝑙𝑦pred (5.17)

Where 𝑙𝑦pred ≤ min𝒙′∈𝑀(𝒙 ,𝒎 ,𝜖) 𝑓𝜃(𝒙′)[𝑦pred] is a lower bound of the pre-
dicted logit computed using IBP on a masked pertubation set with a
mask 𝒎 with 𝒎[𝑖] = 0 and 𝒎[𝑗] = 1 for 𝑗 ≠ 𝑖.

Gradient [177] The gradient scores are defined as:

𝜎𝑔𝑟𝑎𝑑(𝒙[𝑖]) =
����𝜕 𝑓𝜃(𝒙)[𝑦pred]

𝜕𝒙[𝑖]

���� (5.18)

Intuitively gradient measures the sensitivity of the output logit with
respect to infinitesimal perturbations of the input feature. In general
feature attribution methods are natural candidates for the ordering
procedure as they provide a score of importance for each input feature.
Doncenco et al. [177] studied the use of various feature attribution
methods for the ordering procedure in VeriX and found no significant
advantage of using more complex methods over input gradients. They
also prove that for linear models the gradient ordering is optimal.

5.3.2 Linear Coefficients as traversal order
We also introduce a new traversal order, to the best of our knowledge,
using relational coefficients. Inspired by the problem of ranking input
features to better guide input partitioning we described in Chapter 3, we
propose to use the linear coefficients as a traversal order for VeriX.
We consider as the initial perturbation space the entire ball 𝐵(𝒙 , 𝜖). For a
linearization technique 𝕃, we write Λ𝕃 ∈ ℝ𝑛 , 𝑏 ∈ ℝ and Λ𝕃 ∈ ℝ𝑛 , 𝑏 ∈ ℝ
the coefficient vectors and bias obtained by the analysis of the network 𝑓𝜃
on 𝐵(𝒙 , 𝜖) using the linearization technique 𝕃. Using sound linearization
techniques we have that:

∀𝒙 ∈ 𝐵(𝒙 , 𝜖),Λ𝕃 · 𝒙 + 𝑏 ≤ 𝑓𝜃(𝒙)[𝑦pred] ≤ Λ𝕃 · 𝒙 + 𝑏. (5.19)

We then compute the scores as the mean of the absolute values of the
lower and upper bound coefficients:

𝜎𝑐𝑜𝑒 𝑓 𝑓 (𝒙[𝑖]) =
|Λ𝕃[𝑖]| + |Λ𝕃[𝑖]|

2
. (5.20)

The features with the lowest scores are perturbed first as they are
estimated to have the lowest influence on the output logit.
When the input space has more than one channel the scores are averaged
across channels for all traversal orders.

5.3.3 Complexity of the different traversal orders
The occlusion order requires 𝑑 forward passes, as each pixel is perturbed
individually and similarly IBP bounds ordering requires 2 × 𝑑 forward
passes as bound computation typically requires two forward passes (see
Section 2.2.4). Both methods can be batched, using a batch size of 𝑑 for
inputs of dimension 𝑑, or minibatches can be used if the 𝑑 is too large.
The gradient order requires a single forward and backward pass to

82 5 Certified Training for Formal Explainability

Table 5.1: Average time (in ms) and stan-
dard deviation to compute the different
traversal orders on a CNN-7 network on
CIFAR-10. We use 𝜖 = 4/255. The times
are measured on a NVIDIA H100 GPU
across the first 1000 samples of the CIFAR-
10 test set. For occlusion and IBP bounds
the computation is entirely batched (i. e.
with batch size of 1024). We train the
network using three different training
procedures: standard training (Clean),
adversarial training (PGD) and certified
training with the CC-IBP loss [8].

Model Traverse Time (ms)

Clean

occlusion 45 ± 6
gradient 26 ± 1
ibp bounds 370 ± 24
crown coefs 155 ± 5

PGD

occlusion 45 ± 6
gradient 26 ± 6
ibp bounds 368 ± 27
crown coefs 158 ± 14

CC-IBP

heuristic 45 ± 6
gradient 26 ± 1
ibp bounds 369 ± 24
crown coefs 184 ± 23

[176]: Wu et al. (2024), ‘Better Verified
Explanations with Applications to Incor-
rectness and Out-of-Distribution Detec-
tion’
[46]: Xu et al. (2020), ‘Automatic Per-

turbation Analysis for Scalable Certified
Robustness and Beyond’
With Auto_LiRPA we can use a variety
of linearization-based verifiers such as
CROWN and 𝛼−CROWN and run them
on GPU.

[71]: Wu et al. (2023), ‘VeriX: Towards
Verified Explainability of Deep Neural
Networks’
6: The network and parameters are all
taken from Wu et al. [71]
7: We use 𝛼−CROWN with 4 iterations
and a step size of 0.1.

compute the gradients with respect to the input. The linear coefficient
order complexity depends on the underlying linearization technique 𝕃
used. When using CROWN the number of forward and backward passes
is quadratic in the number of layers of the network.
In practice, we find that the gradient method is the fastest and the IBP
bounds method the slowest even when batching as reported in Table
5.1. We believe that IBP bounds computation does not benefit from
batching as much as occlusion due to some overhead in the Auto_-
LiRPA implementation. In general the time to compute the ordering is
negligible compared to the verification queries in VeriX.

5.4 Experimental results
We first evaluate the impact of using a dichotomy search to find a
large irrelevant set before running VeriX-incomplete, an improvement
proposed in Wu et al. [176]. Following our observation that the initial set
thus computed is very close to the final irrelevant set, we rely solely on the
dichotomy search to further compare the different traversal orders. Finally,
using the best traversal order for robust training and the dichotomy search,
we compare three different approach to train for formal explainability:
adversarial training, certified training using expressive losses and our
proposed Feature Subset Certified Training.

5.4.1 Dichotomy search for irrelevant features
We implement the VeriX-incomplete algorithm as described in Algorithm
2, using Auto_LiRPA [46] as the underlying sound but not complete
verifier. We also use a dichotomy search for the biggest irrelevant set
following the improvement on VeriX from Wu et al. [176]. We describe
the procedure in Algorithm 3. The VeriX-incomplete algorithm can then
be used to finish the computation of the irrelevant set, starting with the
output of the dichotomy search as I and perturbing the features of 𝜎 not
yet proven irrelevant. We also consider the possibility of early stopping
and only relying on the dichotomy search to find a subset of irrelevant
features.
Similarly to the introduction of sound but incomplete verifier in the
VeriX loop, doing early stopping still gives a guaranteed lower bound on the

size of the irrelevant set, but does not guarantee that the set is maximal.
We notice experimentally that after the dichotomy search the irrelevant
set is very close to the final maximal set.

Dichotomy search on MNIST with VeriX-complete We evaluate this
using a complete version of VeriX on the first 100 samples of the MNIST
dataset, analyzing a simple feedforward network, with a perturbation
budget 𝜖 = 0.05 and the same ordering 𝜎 as in Wu et al. [71]6. The results
are shown in Table 5.2. On average only 46 additional features are proven
irrelevant after the initial dichotomy search when using a complete
verifier. This represents 5.8% of the total number of features (784 for
MNIST). When moving to an incomplete verifier7, the importance of the
first dichotomy search is even more pronounced as only 5 additional
features are proven irrelevant on average after the initial dichotomy
search.

Dichotomy search on CIFAR-10 with VeriX-incomplete. We also
evaluate the difference of sizes of the irrelevant set after the dichotomy
search and after the full execution when using an incomplete verifier on

5.4 Experimental results 83

1 DichotomySearch(𝒙, 𝜖, 𝑓𝜃):
2 𝜎← TraversalOrder(𝑓𝜃 , 𝒙) = (𝑖1 , 𝑖2 , . . . , 𝑖𝑛)
3 𝑦pred ← argmax𝑘 𝑓𝜃(𝒙)[𝑘]
4 I𝑐 ← 𝜎[1 : ⌊𝑛/2⌋] # first candidate: first half of ordering

5 I 𝑓 ← ∅ # last successful irrelevant set

6 𝜎𝑟𝑒𝑚 ← 𝜎[⌊𝑛/2⌋ + 1 : 𝑛] # remaining untested pixels

7

8 while True do
9 𝜙← Perturb(𝒙 , I𝑐 , 𝜖)

10 𝑟𝑒𝑠 ← Verify(𝜙, 𝑓𝜃 , 𝑦pred)
11 if 𝑟𝑒𝑠 = 𝑇𝑟𝑢𝑒 then
12 I 𝑓 ← I𝑐
13 # add half of the remaining unused pixels

14 𝑚 ← |𝜎𝑟𝑒𝑚 |
15 𝑎𝑑𝑑𝑆𝑒𝑡 ← 𝜎𝑟𝑒𝑚[1 : ⌊𝑚/2⌋]
16 if 𝑎𝑑𝑑𝑆𝑒𝑡 = ∅ then break
17 I𝑐 ← I𝑐 ∪ 𝑎𝑑𝑑𝑆𝑒𝑡
18 𝜎𝑟𝑒𝑚 ← 𝜎𝑟𝑒𝑚[⌊𝑚/2⌋ + 1 : 𝑚]
19 else
20 # remove half of current candidate

21 𝑘 ← |I𝑐 |
22 𝑟𝑒𝑚𝑆𝑒𝑡 ← I𝑐[⌊𝑘/2⌋ + 1 : 𝑘]
23 if 𝑟𝑒𝑚𝑆𝑒𝑡 = ∅ then break
24 I𝑐 ← I𝑐 \ 𝑟𝑒𝑚𝑆𝑒𝑡
25 end if
26

27 end while
28

29 I ← I 𝑓
30

31 return I

Algorithm 3: First steps of VeriX+: dichotomy search

Verifier |I| Δ𝑑𝑖𝑐ℎ𝑜

Complete 619 ± 73 46 ± 58
𝛼−CROWN 462 ± 156 5 ± 7

Table 5.2: Additional irrelevant features
after the dichotomy search on MNIST.
|I| is the mean size of the final irrele-
vant set after the full execution of VeriX-
incomplete and Δ𝑑𝑖𝑐ℎ𝑜 is the mean num-
ber of additional features proven irrele-
vant by the VeriX-incomplete algorithm
after the dichotomy search.

TinyImageNet is a subset of ImageNet
with 200 classes and 500 training samples
and 50 test samples per class and images
downsized to 64 × 64 × 3.

CIFAR-10. We use a convolutional network and two training procedures:
standard training (Clean) and certified training using the CC-IBP loss
[8] (CC-IBP). We use 𝜖 = 4/255 and the four traversal orders described in
Section 5.3. For the underlying verifier we use CROWN. The results are
shown in Table 5.3. The impact of the dichotomy search is even more
pronounced than on MNIST as only a handful of additional features are
proven irrelevant after the initial dichotomy search.
For the following experiments we will use only the dichotomy search as
described in Algorithm 3 algorithm to compute a lower bound on the
size of the irrelevant set.

5.4.2 Traversal orders comparison
Table 5.3 hints at a difference in performance between the traversal orders
depending on the type of training used.
We further investigate this phenomenon on an adversarially trained
model (Adv), a certified trained model (CC-IBP), a standard trained
model (Standard) and a model trained with our Features Subset Certified
Training with a CC-IBP loss (FS-CC-IBP). We use two datasets: CIFAR-10
and TinyImageNet. We here focus on the traversal order comparison.
We refer to the next section for more detailed discussion of the training

84 5 Certified Training for Formal Explainability

Table 5.3: Additional irrelevant features
after the dichotomy search on CIFAR-
10. Evaluation results are grouped by
model and traversal orders. The addi-
tional irrelevant features proven aftter
the dichotomy searchΔ𝑑𝑖𝑐ℎ𝑜 are minimal,
especially when using certified training.
We highlight in bold the best traversal
order for earch model (larger size of irrel-
evant set is better). On the clean model
IBP bounds ordering performs best while
on the CC-IBP model the linear coeffi-
cients ordering is the best.

Model Traversal Order |I| Δ𝑑𝑖𝑐ℎ𝑜

Clean

occlusion 18 ± 10 6 ± 5
gradient 33 ± 16 6 ± 5

ibp bounds 40 ± 20 3 ± 3
crown coefs 27 ± 12 5 ± 4

CC-IBP

occlusion 163 ± 92 4 ± 3
gradient 275 ± 150 2 ± 1

ibp bounds 278 ± 157 2 ± 2
crown coefs 297 ± 152 1 ± 1

procedures and the different trade-offs they offer.
The results are shown in Table 5.4. For all models except the standardly
trained one, the linear coefficient ordering performs best, although the
difference with IBP bounds or gradient ordering is not large. Interestingly,
the IBP bounds ordering performs best for the standardly trained model.
We hypothesize that the robustness induced by adversarial or certified
training yields models with more meaningful gradients, making the
saliency maps a better indicator of important features. Robustness also
helps with the CROWN-coefficient heuristic as robust models have tighter
intermediate bounds, introducing less approximation when linearizing
the networks and yielding more meaningful coefficients.

Table 5.4: Comparison of traversal or-
ders on CIFAR-10 and TinyImageNet us-
ing VeriX-incomplete with only the di-
chotomy search. Larger size of the irrel-
evant set is better. For each model we
highlight in bold the best traversal order.
The epsilon used is 𝜖 = 4/255 for both
datasets. The results are averaged over
300 samples of the test set for CIFAR-10
and 200 samples of the test set for TinyIm-
ageNet. For CIFAR-10 the total number
of features is 1024 and for TinyImageNet
it is 4096.

Dataset Method |I|-Heuristic |I|-IBP Bounds |I|-CROWN Coefs |I|-Grad

CIFAR-10

Adv 89 ± 55 110 ± 72 112 ± 74 99 ± 69
CC-IBP 178 ± 99 305 ± 154 326 ± 154 302 ± 151

Standard 12 ± 10 37 ± 22 20 ± 11 25 ± 15
FS-CC-IBP 67 ± 51 124 ± 96 140 ± 93 129 ± 92

TinyImageNet

Adv 228 ± 147 318 ± 218 344 ± 228 260 ± 200
CC-IBP 416 ± 299 671 ± 475 782 ± 498 723 ± 489

Standard 21 ± 19 68 ± 46 23 ± 23 39 ± 29
FS-CC-IBP 185 ± 144 364 ± 394 503 ± 429 421 ± 396

For the rest of the experiments we will use the linear coefficient ordering
as it performs best on robust models and is reasonably fast to compute.

5.4 Experimental results 85

[37]: Madry et al. (2018), ‘Towards Deep
Learning Models Resistant to Adversar-
ial Attacks’

5.4.3 Scalable formal explanations on CIFAR-10
We first justify the need for robust training by presenting experimental
results obtained when lowering the perturbation budget on a standard
model. We then compare three different training procedures to pro-
mote formal explainability: adversarial training, certified training using
expressive losses and our proposed Feature Subset Certified Training.

Low perturbation budgets for scalable formal explanations We study
as a preamble the simple strategy of lowering perturbation budgets to
formally explain a standard network. We show in Table 5.5 the results of
VeriX-incomplete with only the dichotomy search on a CNN-7 architecture
trained only on standard samples of CIFAR-10. Lowering the perturbation
budget increases the size of the irrelevant set, but the empirical 𝜖-formal
explainability rate plunges as the perturbation budget is lowered. Even
on a standard model, it is not possible to find counter examples for
small perturbations. In fact, for the lowest perturbation radius 𝜖 = 0.25/255,
among the 260 non empirically 𝜖-formally explainable samples 33 have
provably trivial explanations. Verification with CROWN is enough to
show the model prediction cannot be changed within the perturbation
budget on those samples.

𝜖-test # EFX𝜖
𝐴𝐴

|I|
0.25/255 40/300 747 ± 234
0.5/255 82/300 418 ± 160
1/255 174/300 210 ± 81

Table 5.5: CIFAR-10 results of VeriX-
incomplete with only the dichotomy
search and CROWN as the underlying
verifier. The results are averaged over
300 samples of the test set. The total
number of features is 1024. We report un-
der EFX𝜖

𝐴𝐴
the number of empirically 𝜖-

formally explainable samples as defined
in Definition 5.1.3, using AutoAttack as
the adversary.

For the next experiments we increase the perturbation budgets, keeping
two values to compare the impact of the perturbation budget on the
trade-off between clean accuracy, empirically 𝜖-formally explainable rate
and size of the irrelevant set. In the following experiments we attempt to
answer two questions:

▶ How simply lowering the perturbation budget with existing train-
ing procedure (adversarial training or certified training) impact the
trade-off between clean accuracy, empirically 𝜖-formally explain-
able rate and size of the irrelevant set?

▶ Can Feature Subset Certified Training further improve this trade-
off?

We first focus on CIFAR-10 with two perturbation budgets for the compu-
tation of irrelevant features: 𝜖 = 4/255 and 𝜖 = 8/255. We chose relatively
large perturbations budget, similar to the ones used in the literature for
certified training on CIFAR-10 [8, 98, 104, 105], showcasing the scalability
of our approach. For all the CIFAR-10 experiments we use the convo-
lutional network with 7-layer CNN-7, commonly used in the certified
robustness literature [8, 98, 104, 105].

Adversarial training setup We train three adversarially trained baseline
with training perturbation budgets 𝜖-train ∈ {1/255, 4/255, 8/255}. The goal is
to evaluate the impact of adversarial training with a reduced perturbation
budget to favor a good trade-off between clean accuracy, empirically
𝜖-formally explainable rate and size of the irrelevant set.
For all models, we use the short schedule with cyclic learning rate of
Chapter 4 described in Section 4.5. We employ a PGD attack [37] with 10

86 5 Certified Training for Formal Explainability

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’
We recall the definition of the CC-IBP
loss (Eq. (2.19)):

L𝛼,𝐶𝐶−𝐼𝐵𝑃 := L
(
−

[
(1 − 𝛼) · 𝒛 𝑓𝜃 (𝒙adv , 𝑦)

+ 𝛼 · z 𝑓𝜃 (𝒙 , 𝑦)
]
; 𝑦

)
.

[199]: Kingma and Ba (2014), ‘Adam: A
method for stochastic optimization’
We use larger perturbation budgets for
adversarial training as it is known to be
much less effective at inducing verifiable
robustness. This is also the reason we
consider the setting with the same per-
turbation budget for training and com-
putation of irrelevant features only for
adversarial training.
8: In their work the attack is computed
with PGD with 8 iterations. They also
increase the perturbation used for the
attack by a factor 2.1. The IBP coefficient
𝛼 is set to 1e-2 after tuning.
[107]: Zhang et al. (2020), ‘Towards Sta-
ble and Efficient Training of Verifiably
Robust Neural Networks’
We obtain these values with a grid
search with 𝜇 ∈ {5%, 10%, 20%} and
𝜏 ∈ {5, 10, 20}.

[79]: Croce and Hein (2020), ‘Reliable
evaluation of adversarial robustness with
an ensemble of diverse parameter-free
attacks’

iterations, a step size of 0.25 × 𝜖 train, SGD with weight decay of 5e-4 as
the optimizer.

Certified training setup We also train three certified training baselines
using the CC-IBP loss [8]. We reuse the same setting as the model tuned
for robustness to 𝜖 = 2/255 in De Palma et al. [8]: a schedule of 160 epochs
with the training perturbation ramped up from 0 to the target 𝜖 for
80 epochs, the specialized initialization and regularization of Shi et al.
[98] and L1 regularization with a coefficient of 3e-6. The learning rate is
initialized at 5e-4 and decayed by a factor 5 at epochs 120 and 140, with
Adam [199] as the optimizer.
We choose two different target perturbation budgets for training: 𝜖 ∈
{0.5/255, 1/255}. In addition to the lower perturbation budgets we deviate
from De Palma et al. [8] in two aspects8:

▶ a weaker attack: for the adversarial component of the loss we use
the one step attack RS-FGSM [107] with the same target epsilon as
the IBP component of the loss.

▶ lower ibp coefficient: we use 𝛼 of 1e-3 in the weighted sum of the
loss.

Feature Subset Certified Training setup For the FSCT models a per-
turbation budget of 𝜖 ∈ {2/255, 4/255} during training, dividing the target
perturbation budget of VeriX by 2. We use the same schedule, hyper-
parameters and attack as the CC-IBP models. For the subset selection
we use 𝜇 = 5% and 𝜏 = 10, perturbing 5% of the inputs from epoch 10
onwards for the model trained at 𝜖 = 2/255 and 𝜇 = 20%, 𝜏 = 10 for the
model trained at 𝜖 = 4/255 with 𝜇 = 20%.

Evaluation setup We evaluate the models using VeriX-incomplete with
CROWN as the underlying verifier, the CROWN-coefficient traversal
order, using only the dichotomy search to compute a lower bound on the
size of the irrelevant set. We compute the empirically 𝜖-formally explain-
able rate (EFX𝜖

𝐴𝐴
) using AutoAttack [79] to find adversarial examples

within the perturbation budget 𝜖 used for the computation of irrelevant
features. Explanations are computed on the first 30 samples for each class
of the test set, ensuring class balance for our evaluation on a total of 300
samples. The clean accuracy is evaluated on the entire test set. We report
the results in Table 5.6.
As expected, all forms of robust training greatly improve the size of the
irrelevant set I , but they offer different trade-offs between clean accuracy,
empirically 𝜖-formally explainable rate and size of the irrelevant set.

Results on 𝜖 = 4/255 In the lower perturbation regime, reducing the
perturbation budget for adversarial training incurs a significant cost on
the size of the irrelevant set, with a drop of more than 50% when moving
from 𝜖 = 4/255 to 𝜖 = 1/255 (234 vs 112), while the number of empirically
𝜖-formally explainable images remains low with 117 samples out of
300 not being empirically 𝜖-formally explainable. Adversarial training
results in too high overall empirical robustness, making it difficult to
find adversarial examples within the perturbation budget for many
samples.
Using a low perturbation budget with CC-IBP provides a better trade-off:
the resulting verifiable robustness leads to larger irrelevant sets at a
relatively low cost on clean accuracy. However, the rate of empirically 𝜖-
formally explainable, while better than adversarial training, remains low,

5.4 Experimental results 87

𝜖-test Method (𝜖-train) Accuracy (%) # EFX𝜖
𝐴𝐴

|I|

4
255

Standard 90.31 299/300 20 ± 11

PGD (1/255) 88.82 183/300 112 ± 74
PGD (4/255) 82.67 120/300 234 ± 149

CC-IBP (0.25/255) 88.14 257/300 241 ± 120
CC-IBP (0.5/255) 87.19 224/300 326 ± 154

FS-CC-IBP (2/255) 88.87 294/300 140 ± 93

8
255

Standard 90.31 293/300 7 ± 4

PGD (4/255) 82.67 212/300 84 ± 74
PGD (8/255) 73.89 178/300 130 ± 117

CC-IBP (0.5/255) 87.19 299/300 134 ± 88
CC-IBP (1/255) 85.57 291/300 200 ± 114

FS-CC-IBP (4/255) 87.64 299/300 171 ± 95

Table 5.6: Evaluation results on CIFAR-
10. Larger size of the irrelevant set is
better. The total number of features for
CIFAR-10 is 1024. We highlight in bold
the best result for each metric and for
each 𝜖-test, focusing on the robust train-
ing methods. We include the standardly
trained model to gage the trade-offs. Ex-
pectedly, it offers the best clean accuracy,
but not necessarily the best empirically 𝜖-
formally explainable rate: for some sam-
ples it is not possible to find even one
robust feature.

[21]: Deng et al. (2009), ‘Imagenet: A
large-scale hierarchical image database’

with 33 samples out of 300 not being empirically 𝜖-formally explainable
for the model trained with the lowest perturbation budget (𝜖 = 0.25/255).
The use of FSCT with CC-IBP (FS-CC-IBP) provides an interesting trade-
off: it has the highest rate of empirically 𝜖-formally explainable (294 out
of 300) and the highest clean accuracy among all the robust models, with
a larger average irrelevant set than the the adversarial model trained at
𝜖 = 1/255 (140 vs 112).
Overall on this setting it is challenging to obtain a large irrelevant set
while maintaining a high rate of empirically 𝜖-formally explainable:
inducing even a little robustness very quickly leads to the impossibility
of finding adversarial examples within the perturbation budget for some
of the samples. While FS-CC-IBP is better at mitigating this issue, it is
not completely solved and there is a cost on the size of the irrelevant
compared to CC-IBP.

Results on 𝝐 = 8/255 On the higher perturbation regime (𝜖 = 8/255)
adversarial training is even less effective. The robustness still entails the
largest number of samples that are not empirically 𝜖-formally explainable
(89 out of 300 for 𝜖-train = 4/255 and 117 out of 300 for 𝜖-train = 4/255) among
all the robust training methods. Both CC-IBP and FS-CC-IBP exhibit a
larger number of irrelevant features while having a much lower number
of samples that are not empirically 𝜖-formally explainable. FS-CC-IBP
here offers a good trade-off between the two CC-IBP models, with larger
irrelevant sets than the model trained at 𝜖 = 0.5/255 while maintaining
comparable rate of empirically 𝜖-formally explainable and clean accuracy.
Increasing the perturbation budget with CC-IBP leads to the largest
irrelevant set but at the cost of a lower clean accuracy and a lower rate of
empirically 𝜖-formally explainable.

5.4.4 Scalable formal explanations on TinyImageNet
We use a similar study on TinyImageNet to further show the scalability
of our approach. TinyImageNet is a subset of ImageNet [21], using 200
classes out of the original 1000 and images of size 64x64x3.

88 5 Certified Training for Formal Explainability

9: This is due notably to the relatively
low number of samples per class (500
samples for each class in the training
set). The original version of the CNN-7
architecture is popular in the certified
training literature even for TinyImagenet,
e. g. in De Palma et al. [8] or Mao et al.
[174] since standard training is not used
as a baseline.

[6]: Wong et al. (2020), ‘Fast is better than
free: Revisiting adversarial training’

10: We did a grid search with the same
values as for CIFAR-10, and found the
same final parameters to provide good
results.

General training setup We make a notable change in the architecture of
the CNN-7 used in the literature: we replace the flattening and linear layer
directly after the last convolutional layer with a global average pooling.
This change is necessary to reduce overfitting for the standard baseline,
a particular concern on TinyImageNet.9
We use a schedule of 70 epochs with an initial learning rate of 5e-4,
decayed by a factor 5 at epochs 50 and 60, with Adam as the optimizer,
for all the training methods.
We consider training perturbation budgets 𝜖-train in {1/255, 4/255, 8/255}
for the adversarially trained models. The attack is also computed with
PGD with 10 iterations and a step size of 0.25 × 𝜖-train.
The CC-IBP models are trained with perturbation budgets 𝜖-train ∈
{0.25/255, 0.5/255, 1/255}, with RS-FGSM [6] as the attack for the adversarial
component of the loss and an IBP coefficient 𝛼 of 1e-3.
Finally, we use the same parameters for the FS-CC-IBP models as for
CIFAR-10, with 𝜖-train ∈ {2/255, 4/255} and subset selection parameters
𝜇 = 5%, 𝜏 = 10 for the model trained at 𝜖 = 2/255 and 𝜇 = 20%, 𝜏 = 10 for
the model trained at 𝜖 = 4/255.10 The perturbation budget is ramped up
from 0 to the target 𝜖 for the initial 20 epochs for CC-IBP and FS-CC-IBP
models.

Evaluation setup We use the same evaluation setup as for CIFAR-10,
with VeriX-incomplete using CROWN as the underlying verifier, the
CROWN-coefficient traversal order and only the dichotomy search to
compute a lower bound on the size of the irrelevant set. We compute
the empirically 𝜖-formally explainable rate (EFX𝜖

𝐴𝐴
) using AutoAttack to

find adversarial examples within the perturbation budget 𝜖 used for the
computation of irrelevant features. Explanations are computed on the
first 5 samples of each class of the test set (1000 samples in total) and the
clean accuracy is evaluated on the entire test set. The results are reported
in Table 5.7.

Table 5.7: Evaluation results on TinyIm-
ageNet. The total number of features is
4096 (64 × 64). We highlight in bold the
best result for each metric and for each
𝜖-test, focusing on the robust training
methods. We include the standardly
trained model to gage the trade-offs.
Expectedly, it offers the best clean
accuracy and empirically 𝜖-formally
explainable rate as it is always possible
to find adversarial examples within the
perturbation budget. However, it offers
the worst size of the irrelevant set.

𝜖-test Method (𝜖-train) Accuracy (%) # EFX𝜖
𝐴𝐴

|I|

4
255

Standard 54.80 990/1000 23 ± 27

PGD (1/255) 52.61 911/1000 340 ± 217
PGD (4/255) 41.41 763/1000 741 ± 496

CC-IBP (0.25/255) 46.20 976/1000 558 ± 378
CC-IBP (0.5/255) 44.79 947/1000 804 ± 514

FS-CC-IBP (2/255) 48.60 996/1000 506 ± 393

8
255

Standard 54.80 887/1000 6 ± 7

PGD (4/255) 41.41 925/1000 263 ± 242
PGD (8/255) 29.32 882/1000 617 ± 485

CC-IBP (0.5/255) 44.79 997/1000 306 ± 227
CC-IBP (1/255) 42.36 988/1000 465 ± 323

FS-CC-IBP (4/255) 44.49 998/1000 684 ± 484

Results on TinyImageNet Similarly to CIFAR-10 the standard model
does not have every sample as empirically 𝜖-formally explainable: for

5.5 Related work 89

[71]: Wu et al. (2023), ‘VeriX: Towards
Verified Explainability of Deep Neural
Networks’

[176]: Wu et al. (2024), ‘Better Verified
Explanations with Applications to Incor-
rectness and Out-of-Distribution Detec-
tion’
[71]: Wu et al. (2023), ‘VeriX: Towards

Verified Explainability of Deep Neural
Networks’
[40]: Singh et al. (2019), ‘An Abstract

Domain for Certifying Neural Networks’
11: GTRSB is the German Traffic Sign
Benchmark [200]. It contains only images
of digits but in color and with dimension
32 × 32.
[177]: Doncenco et al. (2025), ‘A Dive

into Formal Explainable Attributions for
Image Classification’
[59]: Lemesle et al. (2024), ‘Neural Net-

work Verification with PyRAT’

some samples it is not possible to find even one robust feature among
the 4096 input features. This highlights the need for some robustness to
obtain meaningful explanations.
At 𝜖-test = 4/255, the FS-CC-IBP model has a more interesting trade-
off than for CIFAR-10. It has the highest rate of empirically 𝜖-formally
explainable (996 out of 1000) and the average number of irrelevant features
is about 50% larger than the adversarial model trained at 𝜖 = 1/255 (506
vs 340), and only 10% below the CC-IBP model trained with the lowest
perturbation budget. However, the cost on the clean accuracy is higher,
with a drop of about 6 percentage points from the standard model.
We note that the robust baselines, in particular the CC-IBP models, have a
higher rate of empirically 𝜖-formally explainable on TinyImageNet than
on CIFAR-10. This is likely due to the challenge of the dataset (higher
number of classes but fewer samples per class, more complex images)
making it easier to find adversarial examples.
At 𝜖-test = 8/255 FS-CC-IBP provides the best trade-off, with the highest
rate of empirically 𝜖-formally explainable and the largest average irrel-
evant sets. Its clean accuracy is only slightly below the CC-IBP model
at 𝜖-train = 0.5/255, which has the best clean accuracy over the robust
models. We note that this CC-IBP model also has comparable rate of
empirically 𝜖-formally explainable but a much lower average number
of irrelevant features (306 vs 684). While it can be increased by training
with a larger 𝜖, doubling it is not enough to bridge the gap, with a lower
clean accuracy, lower rate of empirically 𝜖-formally explainable and still
a smaller irrelevant set on average.
For both 𝜖-test, adversarial training has the worst rate of empirically
𝜖-formally explainable overall, and decreasing the perturbation budget
is not enough to reach the explainability performance of CC-IBP or
FS-CC-IBP.
We note that adversarial training at 𝜖-train = 8/255 is particularly chal-
lenging, with a large cost on clean accuracy (29.32%). Further efforts to
find better training hyperparameters for this setting should improve the
trade-off.

5.5 Related work
We first discuss improvements to the original VeriX algorithm [71]
focused on reducing the number of calls to the verifier without trading
off minimality of the explanations. We then present approaches that
trade off minimality for scalability, either by using incomplete verifiers
or other heuristics.

Improving formal explainability without trading off minimality
VeriX + [176], building on VeriX [71], proposes several improvements:
a new ordering, IBP bounds, discussed in Section 5.3.1, the dichotomy
search described in Algorithm 3, with an additional optimization specific
to their implementation of the verifier calls. All these improvements do
not trade off minimality of the explanations but rather reduce the number
of calls to the verifier in practice.

Using incomplete verifiers Wu et al. [71] uses DeepPoly [40] as an
incomplete verifier and show the trade-off between the size of the
irrelevant set and the computation time on standardly trained model
with small perturbation budgets (𝜖 = 0.05 for MNIST and 𝜖 = 0.005 for
GTRSB).11.
Doncenco et al. [177] uses PyRAT [59] (with a zonotope abstraction) and

90 5 Certified Training for Formal Explainability

[107]: Zhang et al. (2020), ‘Towards Sta-
ble and Efficient Training of Verifiably
Robust Neural Networks’

12: More specifically, they randomly
compute adversarial perturbation on half
of the training set. The perturbation are
computed on a pretrained model. The
final model is thus trained on a set con-
taining a mix of clean samples and at-
tacked samples transferred from another
model.

[178]: Izza et al. (2024), ‘Distance-
restricted explanations: theoretical un-
derpinnings & efficient implementation’
[201]: Junker (2004), ‘QUICKXPLAIN:

preferred explanations and relaxations
for over-constrained problems’
[72]: Bassan and Katz (2023), ‘Towards
Formal XAI: Formally Approximate Min-
imal Explanations of Neural Networks’

13: The super-pixels proven irrelevant
only contains irrelevant features but
the super-pixels remaining unknown or
proven relevant can contain both rele-
vant and irrelevant features even if the
underlying verifier is complete.
[202]: Bassan et al. (2025), ‘Explaining,
Fast and Slow: Abstraction and Refine-
ment of Provable Explanations’
[203]: Ladner and Althoff (2025), ‘Fully

Automatic Neural Network Reduction
for Formal Verification’

[204]: Bassan et al. (2025), ‘Explain Your-
self, Briefly! Self-Explaining Neural Net-
works with Concise Sufficient Reasons’

14: They use a ResNet18.

CROWN-IBP [107] as incomplete verifiers, together with Marabou. Their
idea is to treat feature attributions as traversal order heuristics in VeriX,
and then evaluate them by measuring the sizes of the resulting formal
explanations. In this setup, smaller explanations correspond to better
attribution methods. They show that although the use of incomplete
verifiers introduces some loss of minimality, this does not affect the
relative ranking of attribution methods.

Robust training and formal explainability There is little discussion in
the literature on the impact of the training method on the explainability
of the resulting models. Wu et al. [176] consider a form of adversarial
training12 on a MNIST Fully Connected network. They show that the
explanation size is reduced when the model is adversarially trained. The
model has poor formal explainability: it is certifiably robust on more than
50% of the samples. Doncenco et al. [177] evaluate models trained with
certified training at different perturbations levels. They do not report their
formal explainability in terms of 𝜖-formally explainable rate (empirical or
verified). They focus on their metric comparing the attribution methods
used as traversal order: it remains consistent across perturbation levels.

Other approaches trading off minimality for scalability Several works
have introduced approaches to compute explanations of larger sizes,
losing the guarantee of minimality for a more efficient computation. Both
Wu et al. [176] and Izza et al. [178] adapted the QuickXplain algorithm
Junker [201] to the formal explainability setting. QuickXplain is a divide-
and-conquer algorithm allowing parallelization of the computation of
the explanations but losing the guarantee of minimality.
Doncenco et al. [177] and Bassan and Katz [72] propose to consider
subsets of features instead of single features. They first partition the input
into super-pixels (called bundles in Bassan and Katz [72]), then apply
VeriX or a similar approach to find a minimal set of super-pixels that must
be fixed to maintain the classification. This approach can be parametrized
by the size and number of super-pixels, trading off the granularity of
the explanations for scalability. The explanations are not minimal since a
super-pixel can contain both relevant and irrelevant features.13 Note that
Bassan and Katz [72] do not consider 𝜖-robust explanations but formal
explanations with no restriction on the perturbation budget.
Finally, Bassan et al. [202] build on an abstraction-refinement framework
for neural network verification [203]. The neurons of the network are
merged to build an abstracted network, allowing faster verification.
It is also a trade-off between performance and computation time. By
construction the explanation of the abstracted network is a superset of
the explanation of the original network. The abstraction can be gradually
refined to obtain smaller explanations.
These approaches are orthogonal to our work: they can be used in
conjunction with our training method to further improve scalability. We
find it promising future work to evaluate the combination of our training
method with some of these approaches.

Training for explainability Sufficient Subset Training (SST), proposed
in Bassan et al. [204], is closely related to our work. They propose a
dual-propagation training method to train self-explainable models with
conciseness as one of the goals. In addition to training standardly on
clean samples, SST involves learning to mask and maintain prediction on
masked samples. This second task involves two stages: producing a mask,
and classifying samples perturbed according to the mask. To achieve this
they modify a standard convolutional network14 so that it outputs two

5.6 Conclusion and future work 91

[205]: Fong and Vedaldi (2017), ‘Inter-
pretable Explanations of Black Boxes by
Meaningful Perturbation’

[206]: Ribeiro et al. (2018), ‘Anchors: high-
precision model-agnostic explanations’

[207]: Carter et al. (2019), ‘What made
you do this? Understanding black-box
decisions with sufficient input subsets’
[208]: Fel et al. (2023), ‘Don’t Lie to Me!
Robust and Efficient Explainability with
Verified Perturbation Analysis’

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’
[107]: Zhang et al. (2020), ‘Towards Sta-
ble and Efficient Training of Verifiably
Robust Neural Networks’
[75]: He et al. (2016), ‘Identity mappings
in deep residual networks’

vectors: the usual logit vector, and a vector of scores in [0, 1]𝑑, with 𝑑
the dimension of the samples considered. Those scores are produced by
adding a decoder to the network with a sigmoid activation as a last layer.
Features with a score above a threshold are unchanged, and the others
are perturbed. The masks are then used to select the subset to perturb.
Three different strategies are considered: using random noise, replacing
with a baseline value (typically 0) or using an adversarial perturbation.
The perturbed inputs are used to train the network, using the predicted
label of the clean sample as the target.
Our work differs in several ways. First, we remain in the framework
of formal explanations. Our training method is designed to help the
computation of formal explanations. The irrelevant features we consid-
ered are provably irrelevant, even if the irrelevant set is not maximal.
Consequently, we rely on over-approximations during training to enforce
verifiable robustness on subset of features, rather than only relying on
adversarial attacks as done with the robust masking strategy in Suffi-
cient Subset Training (for both training and evaluation). Secondly, we
do not claim to train self-explainable models. In SST, the binary mask
obtained with the threshold is considered as the explanation of the
model. There is no notion of formal explanation anymore: the mask is
evaluated post-training using the same perturbation heuristics as used
during training. It is also compared only to heuristic post-hoc explanation
methods [205–207].

Over-approximations for feature attribution The work of Fel et al.
[208] also uses bounding methods to compute explanations. However,
they do not aim to find formal explanations in the sense of Wu et al. [71],
but rather to compute feature attributions, scoring the features according
to the difference in the output bounds when the feature is perturbed or
not. Given output bounds of the network, they compute the adversarial
overlap: the lower bound of the logit of the predicted class minus the
upper bound of the logit of the second-highest class. The adversarial
overlap is computed when every feature is perturbed, then when the
feature in a subset of interest are fixed. The drop in adversarial overlap
is used as a score for the features in the subset. The larger the drop, the
more important the features in the subset are considered to be. It can be
seen as a more involved version of the bounding heuristic for the traversal
order of VeriX-incomplete described in Section 5.3.1, and it would be
interesting future work to evaluate it as a traversal order heuristic.

5.6 Conclusion and future work
In this chapter, we have taken first steps toward training for formal
explainability by training models under partial perturbations restricted
to feature subsets with Feature Subset Certified Training (FSCT). We
also discussed the notion of empirically 𝜖-formally explainable, a crucial
aspect to compare model’s formal explainability beyond the size of
the explanations. "Our new traversal order, inspired by the heuristic
described in Chapter 3, consistently outperforms existing heuristics for
all robust models we trained. Preliminary results indicate that FSCT is an
interesting trade-off between explanation size and the rate of empirically
𝜖-formally explainable compared to other robust training methods.
We plan to further investigate the applicability of FSCT in combination
with different certified losses (e.g., MTL-IBP [8], CROWN-IBP [107])
and alternative architectures such as ResNets [75]. A more ambitious
direction is to frame feature masking as a learnable component, leveraging

92 5 Certified Training for Formal Explainability

segmentation techniques to determine which—and how many—features
should be masked in a full end-to-end training.
The greatest challenge is to train models where incomplete methods
provide both partial verification (e.g., via over-approximations such as
CROWN, as done in this work) and falsification (e.g., adversarial attacks
limited to robust features plus one unknown feature).

Conclusion

1: https://pyrat-analyzer.com/

[58]: Wang et al. (2018), ‘Formal Secu-
rity Analysis of Neural Networks Using
Symbolic Intervals’

[60]: Brix et al. (2024), ‘The fifth inter-
national verification of neural networks
competition (vnn-comp 2024): Summary
and results’
[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’

[4]: Jorge et al. (2022), ‘Make Some Noise:
Reliable and Efficient Single-Step Adver-
sarial Training’

Conclusion and Perspectives 6
Contributions
In this thesis, we studied how bound propagation and linear approx-
imations of neural networks can be leveraged to improve verification,
empirical robustness, and formal explainability. Verification is an impor-
tant problem but is known to be NP-complete [134]. Making verification
tractable is an active area of research. In a first contribution we study in
particular input partitioning, a form of branch-and-bound. Due to this
tractability issue, the field of certified training has emerged as a way to
incorporate verifiability in the training process. Certified training heavily
relies on bound propagation, often using the loose but scalable interval
bound propagation (IBP) method. Certified training is well studied in
the context of provable robustness. In this thesis, we propose to study it
in two other applications: improving empirical robustness and formal
explainability.

Tightening Bounds for Incomplete Verification The field of neural
network verification is very active and there are many works studying
branch-and-bound, a key ingredient of most neural network verifiers.
For networks with high-dimensional input spaces, the focus has been on
branching on internal nodes of the networks. Input partitioning is another
form of branching, simple yet effective in some settings. This approach
is particularly interesting for networks with low-dimensional inputs
where the input ranges specified by the property of interest are large. We
proposed ReCIPH in Chapter 3, a heuristic to speedup branching in the
case of input partitioning. Its goal is to reduce the number of subproblems
to be analyzed. ReCIPH leverages the linear coefficients readily available
from bound propagation methods to rank inputs for partitioning. It
supports any network supported by the bound propagation method, and
is easily parallelized. ReCIPH is implemented in PyRAT 1. We showed that
ReCIPH significantly outperforms the largest-interval strategy on several
benchmarks. The number of subproblems to analyze is comparable to
that of the gradient smear heuristic [58], but the latter requires additional
computation, making ReCIPH more advantageous. PyRAT, employed
with ReCIPH on several benchmarks, got competitive results from a recent
edition of the International Verification of Neural Networks Competition
(VNN-COMP 2024) [60].

Certified Training for Empirical Robustness In Chapter 4 we proposed
to use a recent framework for certified training, Expressive Losses [8], to
improve empirical robustness. Multi-step adversarial training, a popular
method for improving empirical robustness, suffers from computational
overhead because it requires generating adversarial examples using
several forward and backward passes for a single batch during training.
Single-step adversarial training was proposed to reduce this overhead but
is known to suffer from catastrophic overfitting. We showed that in this
context, expressive losses can be used to train empirically robust models
without suffering from catastrophic overfitting, even in some settings
where the popular randomized method N-FGSM [4] fails. We then studied
the gap between the empirical robustness achieved by certified training
and that achieved by multi-step adversarial training, and showed that

https://pyrat-analyzer.com/

96 6 Conclusion and Perspectives

[53]: Marques-Silva and Ignatiev (2022),
‘Delivering Trustworthy AI through For-
mal XAI’

[71]: Wu et al. (2023), ‘VeriX: Towards
Verified Explainability of Deep Neural
Networks’

[72]: Bassan and Katz (2023), ‘Towards
Formal XAI: Formally Approximate Min-
imal Explanations of Neural Networks’

[196]: La Malfa et al. (2021), ‘On Guar-
anteed Optimal Robust Explanations for
NLP Models’

[149]: Lu and Kumar (2020), ‘Neural
Network Branching for Neural Network
Verification’

when tuned properly, expressive losses can reach performance similar to
multi-step adversarial training in some settings.

Certified Training for Formal Explainability Robustness is a highly
desirable property, especially in the context of safety-critical applications.
However, trustworthiness of a model can also rely on its explainability.
Formal Explainability [53, 71, 72, 196] is an emerging field that connects
provable robustness and explainability. This entails running a neural
network verifier multiple times, considering features in a given order,
to explain the network’s decision on a given input: input features are
deemed irrelevant when perturbing them does not change the network’s
decision. A good heuristic for the ordering of the features leads to
concise explanations. There are active research efforts to make formal
explainability tractable. In Chapter 5, we proposed using certified training
for formal explainability in combination with an incomplete verifier to
compute explanations. Fully robust networks can have void explanations,
as their decisions remain the same for any input feature perturbation.
Introducing incomplete verifiers requires a new notion for evaluating
explanations, as some features can be in an unknown state, and the
true explanation may be void if the unknown features are irrelevant.
We introduce the notion of empirically 𝜖-formally explainable networks:
using an adversarial attack oracle, we can check if perturbing all features
can fool the network, guaranteeing that the true explanation is not
void. We introduce a new training method, Feature Subset Certified
Training, that focuses on training for partial robustness to obtain formally
explainable models. We evaluate our approach on medium-sized neural
networks on two image datasets and find that reducing the perturbation
radius and IBP loss weight in either adversarial training or certified
training with an expressive loss is not always sufficient, and that Feature
Subset Certified Training is a step toward training empirically 𝜖-formally
explainable networks. We also show that the ReCIPH heuristic can be
employed for feature ordering, leading to more concise explanations
when applied to robustly trained models

Perspectives and future directions
Input Partitioning Single input bisection is not the only option for
input partitioning. Choosing not only the input to split, but also how
many other inputs to jointly split, where, and in how many subproblems
at once, are all possibilities for a complex splitting strategy. A successful
approach should be adaptative and generalizable to various networks
and properties. An interesting direction is to frame it as a learning
problem, but it is not straightforward. Starting with the dataset: what
would constitute a sample in a supervised learning problem? The input
could be the network and property, and the label the optimal partitioning
strategy. Building such a dataset would not be tractable. The model
taking the decision would also need to be carefully designed, to be
able to handle various network architectures. Its output should not
only be scores ranking the inputs but should also determine how many
partitions per input are preferable and/or where to split. A starting point
could be the Graph Neural Network approach to learning internal node
branching proposed in [149], possibly combined with reinforcement
learning, using the size of the partitioning tree as a penalty. It is not clear
how beneficial an improved partitioning strategy would be: it remains
applicable only to networks with low-dimensional inputs. Branching on
internal nodes, a widely studied approach, is also applicable to such

97

[209]: Vaswani et al. (2017), ‘Attention is
all you need’
[210]: Bonaert et al. (2021), ‘Fast and

precise certification of transformers’

[211]: Munakata et al. (2022), ‘Verify-
ing Attention Robustness of Deep Neu-
ral Networks against Semantic Perturba-
tions’

[212]: Shao et al. (2023), ‘STR-Cert:
Robustness Certification for Deep Text
Recognition on Deep Learning Pipelines
and Vision Transformers’
[46]: Xu et al. (2020), ‘Automatic Per-

turbation Analysis for Scalable Certified
Robustness and Beyond’
[213]: Athavale et al. (2024), ‘Verifying
Global Two-Safety Properties in Neural
Networks with Confidence’

[214]: Boetius and Leue (2023), Verifying

Global Neural Network Specifications using

Hyperproperties

[49]: Urban and Miné (2021), ‘A Review
of Formal Methods applied to Machine
Learning’

[215]: Banerjee et al. (2024), ‘Input-
Relational Verification of Deep Neural
Networks’
[56]: Wu et al. (2022), ‘Toward Certified
Robustness Against Real-World Distribu-
tion Shifts’
[216]: Ilyas et al. (2019), ‘Adversarial ex-
amples are not bugs, they are features’

[217]: Etmann et al. (2019), ‘On the Con-
nection Between Adversarial Robustness
and Saliency Map Interpretability’

[218]: Chalasani et al. (2020), ‘Concise
Explanations of Neural Networks using
Adversarial Training’

[219]: Srinivas et al. (2023), ‘Which Mod-
els have Perceptually-Aligned Gradients?
An Explanation via Off-Manifold Robust-
ness’

[220]: Ross and Doshi-Velez (2017),
‘Improving the Adversarial Robustness
and Interpretability of Deep Neural Net-
works by Regularizing their Input Gradi-
ents’

[221]: Boopathy et al. (2020), ‘Proper Net-
work Interpretability Helps Adversarial
Robustness in Classification’

[222]: Ganz et al. (2023), ‘Do Perceptually
Aligned Gradients Imply Robustness?’

[223]: Joo et al. (2023), ‘Towards More
Robust Interpretation via Local Gradient
Alignment’
[224]: Banerjee et al. (2024), ‘Interpret-
ing Robustness Proofs of Deep Neural
Networks’
[225]: Serrurier et al. (2022), ‘On the ex-
plainable properties of 1-Lipschitz Neu-
ral Networks: An Optimal Transport Per-
spective’

networks. However, as input partitioning is also used in combination
with internal node branching, an improved input partitioning strategy
could still be beneficial.

Future of Verification On a broader scope, many challenges remain
in verification. Scalability is, of course, a never-ending challenge. Large
Language Models (LLMs) exemplify the ever-growing size of neural
networks. Beyond the scale issue they also introduce new challenges
in the verification process. The attention mechanism of transformers
[209], at the core of LLMs, requires handling dot product between vari-
ables, and linear approximations are ill-suited to handle such operations.
Adapting approximations to transformers is an active area of research
[210–212]. Certified training of transformers remains limited [46]. We do
not foresee any major step toward formal verification of LLMs in the near
future. However, they provide an important avenue for classical software
verification: analysis of LLM generated code.
Another challenge is the specification problem: local robustness is well-
defined but limited in scope. Properties involving several executions of
the network, such as fairness, can be reduced to local robustness using
self-composition [213, 214]. However, this reduction is not necessarily the
most efficient approach. Dedicated solvers [49, 215] are generally more
effective. Global robustness, defined as the robustness of a network on
its data manifold, is a highly desirable yet elusive goal: the manifold is
unknown. Using generative models to approximate the manifold and
integrating it them the verification pipeline is an interesting direction
[56].

Improving Feature Subset Certified Training Besides immediate ex-
tensions of FSCT (e.g. to other datasets and architectures), several im-
provements can be envisioned. The selection of features to be considered
irrelevant at training time could be learned, and not heuristically chosen.
Careful design and tuning of the architecture and loss are needed to
learn good masking and avoid sacrificing accuracy. A major challenge in
scaling formal explainability using incomplete methods is the difficulty
of finding counterexamples, as the model has some robustness and the
perturbation space is reduced. Two directions can be explored: encourag-
ing some features to be relevant at training time (incorporated into the
FSCT framework) and improving the counterexample search itself.

Connections Between Robustness and Explainability Explainability
is highly related to neural network robustness. Provable robustness can
be at odds with formal explainability, as discussed in Chapter 5. However,
empirical robustness has been shown to have beneficial properties for
heuristic-based explainability. On the one hand, adversarial robustness
seems to produce more meaningful explanations [216–219]. On the other
hand, training for explainability can improve local robustness [220–223].
This phenomenon is due to the better alignment of the input gradients
of robust models with human perception. Certified training does not
lead to such alignment: the regularization is too strong, and the input
gradients become flat, producing saliency maps that are very difficult to
interpret [224]. Interestingly, Lipschitz networks on the other hand have
interesting properties toward explainability [225]. A possible direction
to explore is examining the explainability properties of models trained
with Expressive Losses [8] when tuned for this purpose, following our
study in Chapter 4. Quantifying the quality of saliency maps can be done
using the perceptual alignment metric introduced in [219]. It would also
be interesting to investigate whether Feature Subset Certified Training,

98 6 Conclusion and Perspectives

[8]: De Palma et al. (2024), ‘Expressive
Losses for Verified Robustness via Con-
vex Combinations’
[219]: Srinivas et al. (2023), ‘Which Mod-
els have Perceptually-Aligned Gradients?
An Explanation via Off-Manifold Robust-
ness’

introduced in Chapter 5, has any beneficial effect on heuristic-based
explainability.

Bibliography

Here are the references in citation order.

[1] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. ‘Explaining and Harnessing Adversarial
Examples’. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015 (cited on
pages vii, 4, 15, 16).

[2] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. ‘Semidefinite relaxations for certifying
robustness to adversarial examples’. In: Proceedings of the 32nd International Conference on Neural

Information Processing Systems. NIPS’18. Montréal, Canada: Curran Associates Inc., 2018, pp. 10900–
10910 (cited on pages viii, 42).

[3] Ben Batten, Panagiotis Kouvaros, Alessio Lomuscio, and Yang Zheng. ‘Efficient Neural Network
Verification via Layer-based Semidefinite Relaxations and Linear Cuts’. In: Proceedings of the Thirtieth

International Joint Conference on Artificial Intelligence, ĲCAI-21. Ed. by Zhi-Hua Zhou. Main Track.
International Joint Conferences on Artificial Intelligence Organization, Aug. 2021, pp. 2184–2190. doi:
10.24963/ijcai.2021/301 (cited on pages viii, 42).

[4] Pau de Jorge, Adel Bibi, Riccardo Volpi, Amartya Sanyal, Philip Torr, Grégory Rogez, and Puneet K.
Dokania. ‘Make Some Noise: Reliable and Efficient Single-Step Adversarial Training’. In: Advances

in Neural Information Processing Systems. Ed. by Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho. 2022 (cited on pages viii, ix, 16, 17, 47, 48, 50–53, 55, 61, 69, 95).

[5] Maksym Andriushchenko and Nicolas Flammarion. ‘Understanding and Improving Fast Adversarial
Training’. In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 16048–16059 (cited on
pages viii, 17, 45–47, 51, 52, 69).

[6] Eric Wong, Leslie Rice, and J. Zico Kolter. ‘Fast is better than free: Revisiting adversarial training’. In:
International Conference on Learning Representations. 2020 (cited on pages viii, 5, 16, 47, 51, 52, 70, 88).

[7] Elias Abad Rocamora, Fanghui Liu, Grigorios Chrysos, Pablo M. Olmos, and Volkan Cevher. ‘Efficient
local linearity regularization to overcome catastrophic overfitting’. In: The Twelfth International

Conference on Learning Representations. 2024 (cited on pages viii, 17, 46, 50–56, 69).
[8] Alessandro De Palma, Rudy Bunel, Krishnamurthy Dvĳotham, M. Pawan Kumar, Robert Stanforth,

and Alessio Lomuscio. ‘Expressive Losses for Verified Robustness via Convex Combinations’. In: The

Twelfth International Conference on Learning Representations. 2024 (cited on pages x, 5, 20, 21, 31, 45, 46,
50, 51, 58, 59, 70, 71, 73, 74, 78, 82, 83, 85, 86, 88, 91, 95, 97, 98).

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ‘ImageNet Classification with Deep Con-
volutional Neural Networks’. In: Advances in Neural Information Processing Systems. Ed. by F. Pereira,
C.J. Burges, L. Bottou, and K.Q. Weinberger. Vol. 25. Curran Associates, Inc., 2012 (cited on pages 1,
13).

[10] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. ‘Mastering the game of Go with deep neural
networks and tree search’. In: Nature 529.7587 (Jan. 1, 2016), pp. 484–489. doi: 10.1038/nature16961
(cited on page 1).

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, et al. ‘Language Models are
Few-Shot Learners’. In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle, M.
Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 1877–1901
(cited on page 1).

https://doi.org/10.24963/ijcai.2021/301
https://doi.org/10.1038/nature16961

[12] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens
Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav
Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal
Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David
Silver, Oriol Vinyals, et al. ‘Highly accurate protein structure prediction with AlphaFold’. In: Nature

596.7873 (Aug. 1, 2021), pp. 583–589. doi: 10.1038/s41586-021-03819-2 (cited on page 1).
[13] Frank Rosenblatt. ‘The perceptron: a probabilistic model for information storage and organization in

the brain.’ In: Psychological review 65 6 (1958), pp. 386–408 (cited on page 1).
[14] Seppo Linnainmaa. ‘Taylor expansion of the accumulated rounding error’. In: BIT Numerical Mathe-

matics 16.2 (June 1, 1976), pp. 146–160. doi: 10.1007/BF01931367 (cited on pages 1, 14).
[15] Paul J. Werbos. ‘Applications of advances in nonlinear sensitivity analysis’. In: System Modeling and

Optimization. Ed. by R. F. Drenick and F. Kozin. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982,
pp. 762–770 (cited on page 1).

[16] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. ‘Learning representations by
back-propagating errors’. In: Nature 323 (1986), pp. 533–536 (cited on page 1).

[17] Kunihiko Fukushima. ‘Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position’. In: Biological Cybernetics 36.4 (Apr. 1, 1980),
pp. 193–202. doi: 10.1007/BF00344251 (cited on pages 1, 14, 15).

[18] Wei Zhang, Kazuyoshi Itoh, Jun Tanida, and Yoshiki Ichioka. ‘Parallel distributed processing model
with local space-invariant interconnections and its optical architecture’. In: Appl. Opt. 29.32 (Nov.
1990), pp. 4790–4797. doi: 10.1364/AO.29.004790 (cited on pages 1, 2, 15).

[19] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
‘Backpropagation Applied to Handwritten Zip Code Recognition’. In: Neural Computation 1.4 (1989),
pp. 541–551. doi: 10.1162/neco.1989.1.4.541 (cited on pages 1, 2, 15).

[20] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. ‘Large-scale deep unsupervised learning using
graphics processors’. In: Proceedings of the 26th Annual International Conference on Machine Learning.
ICML ’09. Montreal, Quebec, Canada: Association for Computing Machinery, 2009, pp. 873–880. doi:
10.1145/1553374.1553486 (cited on pages 1, 2).

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ‘Imagenet: A large-scale
hierarchical image database’. In: 2009 IEEE conference on computer vision and pattern recognition. Ieee.
2009, pp. 248–255 (cited on pages 1, 2, 87).

[22] Jingyuan Zhao, Yuyan Wu, Rui Deng, Susu Xu, Jinpeng Gao, and Andrew Burke. ‘A Survey of
Autonomous Driving from a Deep Learning Perspective’. In: ACM Comput. Surv. 57.10 (May 2025).
doi: 10.1145/3729420 (cited on pages 1, 2).

[23] Md Manjurul Ahsan, Shahana Akter Luna, and Zahed Siddique. ‘Machine-learning-based disease
diagnosis: A comprehensive review’. In: Healthcare. Vol. 10. 3. MDPI. 2022, p. 541 (cited on pages 1, 2).

[24] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine Bias: There’s software used across

the country to predict future criminals. And it’s biased against blacks. ProPublica. Accessed: YYYY-MM-DD.
May 2016. url: https://www.propublica.org/article/machine-bias-risk-assessments-in-
criminal-sentencing (cited on pages 1, 2).

[25] Wikipedia contributors. List of Tesla Autopilot crashes. https://en.wikipedia.org/wiki/List_of_
Tesla_Autopilot_crashes. Last major update Oct 2024; accessed: 2025-10-02. Oct. 2024 (cited on
pages 1, 2).

[26] Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. ‘Defending against neural fake news’. In: Advances in neural information processing systems

32 (2019) (cited on pages 1, 2).
[27] European Union. Regulation (EU) 2024/1689 Artificial Intelligence Act. https://eur-lex.europa.eu/

eli/reg/2024/1689/oj. Official Journal of the European Union, L 202, 12 July 2024, p. 1–132. 2024.
(Visited on 10/03/2025) (cited on pages 1, 2).

[28] Florent Kirchner, Nikolai Kosmatov, Virgile Prévosto, Julien Signoles, and Boris Yakobowski. ‘Frama-C:
A software analysis perspective’. In: Formal Aspects of Computing 27.3 (May 2015), pp. 573–609. doi:
10.1007/s00165-014-0326-7 (cited on page 2).

https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1007/BF01931367
https://doi.org/10.1007/BF00344251
https://doi.org/10.1364/AO.29.004790
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1145/1553374.1553486
https://doi.org/10.1145/3729420
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://en.wikipedia.org/wiki/List_of_Tesla_Autopilot_crashes
https://en.wikipedia.org/wiki/List_of_Tesla_Autopilot_crashes
https://eur-lex.europa.eu/eli/reg/2024/1689/oj
https://eur-lex.europa.eu/eli/reg/2024/1689/oj
https://doi.org/10.1007/s00165-014-0326-7

[29] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. ‘Design and Implementation of a Special-Purpose Static Program
Analyzer for Safety-Critical Real-Time Embedded Software’. In: The Essence of Computation: Complexity,

Analysis, Transformation. Essays Dedicated to Neil D. Jones. Ed. by Mogensen, T., Schmidt, D.A.,
Sudborough, and I.H. Vol. 2566. Lecture Notes in Computer Science. Springer, 2002, pp. 85–108. doi:
10.1007/3-540-36377-7_5 (cited on page 2).

[30] Edmund M. Clarke and E. Allen Emerson. ‘Design and synthesis of synchronization skeletons using
branching time temporal logic’. In: Logics of Programs. Ed. by Dexter Kozen. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1982, pp. 52–71 (cited on page 2).

[31] T. Coquand and Gérard Huet. The calculus of constructions. Tech. rep. RR-0530. INRIA, May 1986 (cited
on page 2).

[32] Lawrence C. Paulson. ‘The foundation of a generic theorem prover’. In: Journal of Automated Reasoning

5.3 (Sept. 1, 1989), pp. 363–397. doi: 10.1007/BF00248324 (cited on pages 2, 14).
[33] Patrick Cousot and Radhia Cousot. ‘Abstract Interpretation: A Unified Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints’. In: Conference Record of the

Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA, January

1977. Ed. by Robert M. Graham, Michael A. Harrison, and Ravi Sethi. ACM, 1977, pp. 238–252. doi:
10.1145/512950.512973 (cited on page 2).

[34] N.G. Leveson and C.S. Turner. ‘An investigation of the Therac-25 accidents’. In: Computer 26.7 (1993),
pp. 18–41. doi: 10.1109/MC.1993.274940 (cited on page 2).

[35] H. Gordon Rice. ‘Classes of recursively enumerable sets and their decision problems’. In: Transactions

of the American Mathematical Society 74 (1953), pp. 358–366 (cited on page 2).
[36] Patrick Cousot. Principles of abstract interpretation. MIT Press, 2021, pp. 1–819 (cited on page 2).
[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.

‘Towards Deep Learning Models Resistant to Adversarial Attacks’. In: International Conference on

Learning Representations. 2018 (cited on pages 2, 5, 15, 16, 85).
[38] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev. ‘AI2: Safety and

Robustness Certification of Neural Networks with Abstract Interpretation’. In: 2018 IEEE Symposium

on Security and Privacy (SP). 2018, pp. 3–18 (cited on pages 3, 26).
[39] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. ‘Fast and

Effective Robustness Certification’. In: Advances in Neural Information Processing Systems 31. Ed. by
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates,
Inc., 2018, pp. 10802–10813 (cited on pages 3, 25–27, 35).

[40] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. ‘An Abstract Domain for
Certifying Neural Networks’. In: Proceedings of the ACM on Programming Languages 3.POPL (2019),
pp. 1–30. doi: 10.1145/3290354 (cited on pages 3, 23, 25, 26, 69, 89).

[41] Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. ‘Complete Verification
via Multi-Neuron Relaxation Guided Branch-and-Bound’. In: International Conference on Learning

Representations (2022) (cited on pages 3, 19, 20, 41, 69).
[42] Eric Wong and Zico Kolter. ‘Provable defenses against adversarial examples via the convex outer

adversarial polytope’. In: International Conference on Machine Learning. 2018 (cited on pages 3, 25–27).
[43] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning, and

Inderjit Dhillon. ‘Towards fast computation of certified robustness for ReLU networks’. In: International

Conference on Machine Learning. PMLR. 2018, pp. 5276–5285 (cited on pages 3, 25, 26).
[44] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. ‘Scaling provable adversarial

defenses’. In: Advances in Neural Information Processing Systems. Ed. by S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Vol. 31. Curran Associates, Inc., 2018 (cited
on page 3).

[45] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. ‘Efficient Neural Network
Robustness Certification with General Activation Functions’. In: Advances in Neural Information

Processing Systems. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett. Vol. 31. Curran Associates, Inc., 2018 (cited on pages 4, 25–27, 69).

https://doi.org/10.1007/3-540-36377-7_5
https://doi.org/10.1007/BF00248324
https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/3290354

[46] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura,
Xue Lin, and Cho-Jui Hsieh. ‘Automatic Perturbation Analysis for Scalable Certified Robustness and
Beyond’. In: Neural Information Processing Systems. 2020 (cited on pages 4, 18, 21, 26, 27, 50, 59, 61, 82,
97).

[47] Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark W. Barrett, and Mykel J. Kochenderfer.
‘Algorithms for Verifying Deep Neural Networks’. In: Found. Trends Optim. 4 (2019), pp. 244–404 (cited
on page 4).

[48] Aws Albarghouthi. ‘Introduction to Neural Network Verification’. In: ArXiv abs/2109.10317 (2021)
(cited on page 4).

[49] Caterina Urban and Antoine Miné. ‘A Review of Formal Methods applied to Machine Learning’. In:
CoRR abs/2104.02466 (2021) (cited on pages 4, 97).

[50] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Giorgio
Giacinto, and Fabio Roli. ‘Evasion attacks against machine learning at test time’. In: European Conference

on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD).
Springer. 2013 (cited on pages 4, 15).

[51] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. ‘Intriguing properties of neural networks’. In: 2nd International Conference on Learning

Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. Ed. by
Yoshua Bengio and Yann LeCun. 2014 (cited on pages 4, 15).

[52] Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. ‘Perfectly Parallel Fairness
Certification of Neural Networks’. In: CoRR abs/1912.02499 (2019) (cited on page 4).

[53] Joao Marques-Silva and Alexey Ignatiev. ‘Delivering Trustworthy AI through Formal XAI’. In:
Proceedings of the AAAI Conference on Artificial Intelligence 36.11 (June 2022), pp. 12342–12350. doi:
10.1609/aaai.v36i11.21499 (cited on pages 4, 96).

[54] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. ‘Certified
robustness to adversarial examples with differential privacy’. In: 2019 IEEE symposium on security and

privacy (SP). IEEE. 2019, pp. 656–672 (cited on page 4).
[55] Jeet Mohapatra, Tsui-Wei Weng, Pin-Yu Chen, Sĳia Liu, and Luca Daniel. ‘Towards Verifying Robustness

of Neural Networks Against A Family of Semantic Perturbations’. In: 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). 2020, pp. 241–249. doi: 10.1109/CVPR42600.2020.
00032 (cited on pages 4, 5, 39).

[56] Haoze Wu, Teruhiro Tagomori, Alexander Robey, Fengjun Yang, N. Matni, George Pappas, Hamed
Hassani, Corina S. Păsăreanu, and Clark W. Barrett. ‘Toward Certified Robustness Against Real-World
Distribution Shifts’. In: 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)

(2022), pp. 537–553 (cited on pages 4, 5, 26, 27, 97).
[57] Denis Mazzucato and Caterina Urban. ‘Reduced Products of Abstract Domains for Fairness Certifica-

tion of Neural Networks’. In: 28th Static Analysis Symposium (SAS 2021). Chicago, United States, Oct.
2021 (cited on pages 4, 5, 27, 31, 33, 38).

[58] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. ‘Formal Security Analysis
of Neural Networks Using Symbolic Intervals’. In: Proceedings of the 27th USENIX Conference on Security

Symposium. SEC’18. Baltimore, MD, USA: USENIX Association, 2018, pp. 1599–1614 (cited on pages 5,
24, 31–33, 37, 42, 95).

[59] Augustin Lemesle, Julien Lehmann, and Tristan Le Gall. ‘Neural Network Verification with PyRAT’.
In: ArXiv abs/2410.23903 (2024) (cited on pages 5, 31, 35, 39, 89).

[60] Christopher Brix, Stanley Bak, Taylor T Johnson, and Haoze Wu. ‘The fifth international verifica-
tion of neural networks competition (vnn-comp 2024): Summary and results’. In: arXiv preprint

arXiv:2412.19985 (2024) (cited on pages 5, 31, 32, 39, 95).
[61] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,

Larry S Davis, Gavin Taylor, and Tom Goldstein. ‘Adversarial training for free!’ In: Advances in Neural

Information Processing Systems. Vol. 32. Curran Associates, Inc., 2019 (cited on pages 5, 16, 46).
[62] Alessandro De Palma, Serge Durand, Zakaria Chihani, François Terrier, and Caterina Urban. ‘On

Using Certified Training towards Empirical Robustness’. In: Transactions on Machine Learning Research

(2025) (cited on pages 6, 45).

https://doi.org/10.1609/aaai.v36i11.21499
https://doi.org/10.1109/CVPR42600.2020.00032
https://doi.org/10.1109/CVPR42600.2020.00032

[63] Caglar Aytekin. ‘Neural networks are decision trees’. In: arXiv preprint arXiv:2210.05189 (2022) (cited
on page 6).

[64] Romain Xu-Darme. ‘Algorithms and evaluation metrics for improving trust in machine learning :
application to visual object recognition’. PhD thesis. Université Grenoble Alpes [2020-....], Nov. 2023
(cited on page 6).

[65] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep Inside Convolutional Networks:

Visualising Image Classification Models and Saliency Maps. 2014. url: https://arxiv.org/abs/1312.
6034 (cited on pages 6, 80).

[66] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. ‘Axiomatic attribution for deep networks’. In:
International conference on machine learning. PMLR. 2017, pp. 3319–3328 (cited on pages 6, 74, 80).

[67] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. SmoothGrad:

removing noise by adding noise. 2017. url: https://arxiv.org/abs/1706.03825 (cited on pages 6, 74,
80).

[68] Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, Klaus-Robert Müller, and Wojciech
Samek. ‘Layer-wise relevance propagation for neural networks with local renormalization layers’. In:
Artificial Neural Networks and Machine Learning–ICANN 2016: 25th International Conference on Artificial

Neural Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II 25. Springer. 2016, pp. 63–71
(cited on page 6).

[69] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ‘" Why should i trust you?" Explaining
the predictions of any classifier’. In: Proceedings of the 22nd ACM SIGKDD international conference on

knowledge discovery and data mining. 2016, pp. 1135–1144 (cited on pages 6, 74).
[70] Xuanxiang Huang and Joao Marques-Silva. ‘From Robustness to Explainability and Back Again’. In:

ArXiv abs/2306.03048 (2023) (cited on pages 6, 74, 75).
[71] Min Wu, Haoze Wu, and Clark Barrett. ‘VeriX: Towards Verified Explainability of Deep Neural

Networks’. In: Thirty-seventh Conference on Neural Information Processing Systems. 2023 (cited on pages 6,
73–75, 80, 82, 89, 91, 96).

[72] Shahaf Bassan and Guy Katz. ‘Towards Formal XAI: Formally Approximate Minimal Explanations of
Neural Networks’. In: Tools and Algorithms for the Construction and Analysis of Systems: 29th International

Conference, TACAS 2023, Held as Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2023, Paris, France, April 22–27, 2023, Proceedings, Part I. Paris, France: Springer-Verlag, 2023,
pp. 187–207. doi: 10.1007/978-3-031-30823-9_10 (cited on pages 6, 73, 90, 96).

[73] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. ‘A Convergence Analysis of Gradient
Descent for Deep Linear Neural Networks’. In: International Conference on Learning Representations.
2019 (cited on page 14).

[74] Guodong Zhang, James Martens, and Roger B Grosse. ‘Fast Convergence of Natural Gradient Descent
for Over-Parameterized Neural Networks’. In: Advances in Neural Information Processing Systems. Ed. by
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran
Associates, Inc., 2019 (cited on page 14).

[75] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. ‘Identity mappings in deep residual
networks’. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,

October 11–14, 2016, Proceedings, Part IV 14. Springer. 2016, pp. 630–645 (cited on pages 15, 47, 91).
[76] Sergey Ioffe and Christian Szegedy. ‘Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift’. In: International Conference on Machine Learning. 2015 (cited on
pages 15, 50).

[77] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
‘Dropout: A Simple Way to Prevent Neural Networks from Overfitting’. In: Journal of Machine Learning

Research 15.56 (2014), pp. 1929–1958 (cited on page 15).
[78] Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2022 (cited on page 15).
[79] Francesco Croce and Matthias Hein. ‘Reliable evaluation of adversarial robustness with an ensemble

of diverse parameter-free attacks’. In: ICML. 2020 (cited on pages 16, 69–71, 78, 86).
[80] Leslie Rice, Eric Wong, and Zico Kolter. ‘Overfitting in adversarially robust deep learning’. In:

International conference on machine learning. PMLR. 2020, pp. 8093–8104 (cited on pages 16, 47).

https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1706.03825
https://doi.org/10.1007/978-3-031-30823-9_10

[81] Tianlong Chen, Zhenyu Zhang, Sĳia Liu, Shiyu Chang, and Zhangyang Wang. ‘Robust overfitting may
be mitigated by properly learned smoothening’. In: International Conference on Learning Representations.
2020 (cited on page 16).

[82] Yifei Wang, Liangchen Li, Jiansheng Yang, Zhouchen Lin, and Yisen Wang. ‘Balance, imbalance, and
rebalance: Understanding robust overfitting from a minimax game perspective’. In: Advances in neural

information processing systems 36 (2024) (cited on page 16).
[83] BS Vivek and R Venkatesh Babu. ‘Single-step adversarial training with dropout scheduling’. In: 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. 2020 (cited on page 16).
[84] Geon Yeong Park and Sang Wan Lee. ‘Reliably fast adversarial training via latent adversarial

perturbation’. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021 (cited on
page 16).

[85] Tao Li, Yingwen Wu, Sizhe Chen, Kun Fang, and Xiaolin Huang. ‘Subspace adversarial training’.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022 (cited on
page 16).

[86] Theodoros Tsiligkaridis and Jay Roberts. ‘Understanding and increasing efficiency of frank-wolfe
adversarial training’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2022 (cited on page 16).
[87] Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, and Venkatesh Babu R. ‘Guided Adversarial

Attack for Evaluating and Enhancing Adversarial Defenses’. In: Advances in Neural Information

Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33.
Curran Associates, Inc., 2020, pp. 20297–20308 (cited on page 16).

[88] Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, and Venkatesh Babu Radhakrishnan. ‘Towards
Efficient and Effective Adversarial Training’. In: Advances in Neural Information Processing Systems.
Ed. by A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan. 2021 (cited on page 16).

[89] Hoki Kim, Woojin Lee, and Jaewook Lee. ‘Understanding catastrophic overfitting in single-step
adversarial training’. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 2021,
pp. 8119–8127 (cited on pages 16, 17).

[90] Zeinab Golgooni, Mehrdad Saberi, Masih Eskandar, and Mohammad Hossein Rohban. ‘ZeroGrad:
Costless conscious remedies for catastrophic overfitting in the FGSM adversarial training’. In: Intelligent

Systems with Applications 19 (2023), p. 200258. doi: https://doi.org/10.1016/j.iswa.2023.200258
(cited on pages 16, 17).

[91] Guillermo Ortiz-Jimenez, Pau de Jorge, Amartya Sanyal, Adel Bibi, Puneet K Dokania, Pascal Frossard,
Grégory Rogez, and Philip Torr. ‘Catastrophic overfitting can be induced with discriminative non-
robust features’. In: Transactions on Machine Learning Research (2023) (cited on pages 17, 45, 46).

[92] Runqi Lin, Chaojian Yu, and Tongliang Liu. ‘Eliminating catastrophic overfitting via abnormal
adversarial examples regularization’. In: Advances in Neural Information Processing Systems (2023) (cited
on pages 17, 53).

[93] Runqi Lin, Chaojian Yu, Bo Han, Hang Su, and Tongliang Liu. ‘Layer-Aware Analysis of Catastrophic
Overfitting: Revealing the Pseudo-Robust Shortcut Dependency’. In: International Conference on Machine

Learning (2024) (cited on pages 17, 18, 53).
[94] Teruo Sunaga. ‘Theory of an interval algebra and its application to numerical analysis’. In: RAAG

Memoirs (1958) (cited on page 18).
[95] R.E. Moore. Interval Analysis. Prentice-Hall series in automatic computation. Prentice-Hall, 1966 (cited

on page 18).
[96] A. Neumaier. ‘The Wrapping Effect, Ellipsoid Arithmetic, Stability and Confidence Regions’. In:

Validation Numerics: Theory and Applications. Ed. by R. Albrecht, G. Alefeld, and H. J. Stetter. Vienna:
Springer Vienna, 1993, pp. 175–190. doi: 10.1007/978-3-7091-6918-6_14 (cited on page 19).

[97] Jiameng Fan and Wenchao Li. ‘Adversarial Training and Provable Robustness: A Tale of Two Objectives’.
In: AAAI Conference on Artificial Intelligence. 2021 (cited on pages 19–21).

[98] Zhouxing Shi, Yihan Wang, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. ‘Fast Certified Robust
Training with Short Warmup’. In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan. Vol. 34. Curran Associates, Inc.,
2021, pp. 18335–18349 (cited on pages 19, 21, 46, 51, 58, 59, 61, 64, 69, 70, 85, 86).

https://doi.org/https://doi.org/10.1016/j.iswa.2023.200258
https://doi.org/10.1007/978-3-7091-6918-6_14

[99] Sven Gowal, Krishnamurthy Dvĳotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Uesato,
Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. ‘On the effectiveness of interval bound
propagation for training verifiably robust models’. In: arXiv preprint arXiv:1810.12715 (2018) (cited on
pages 19, 21, 69, 70, 73, 74).

[100] P Henriksen and A Lomuscio. ‘DEEPSPLIT: An Efficient Splitting Method for Neural Network
Verification via Indirect Effect Analysis’. In: Proceedings of the 30th International Joint Conference on

Artificial Intelligence (ĲCAI21). 2021 (cited on pages 19, 20, 40).
[101] Desheng Wang, Weidong Jin, Yunpu Wu, and Aamir Khan. ‘Improving Global Adversarial Robustness

Generalization With Adversarially Trained GAN’. In: arXiv preprint arXiv:2103.04513 (2021) (cited on
pages 19, 20).

[102] Mislav Balunovic and Martin Vechev. ‘Adversarial Training and Provable Defenses: Bridging the
Gap’. In: International Conference on Learning Representations. 2020 (cited on pages 19–21).

[103] Alessandro De Palma, Rudy Bunel, Krishnamurthy Dvĳotham, M. Pawan Kumar, and Robert
Stanforth. ‘IBP Regularization for Verified Adversarial Robustness via Branch-and-Bound’. In: ICML

2022 Workshop on Formal Verification of Machine Learning. 2022 (cited on pages 19–21).
[104] Yuhao Mao, Mark Niklas Muller, Marc Fischer, and Martin T. Vechev. ‘TAPS: Connecting Certified

and Adversarial Training’. In: ArXiv abs/2305.04574 (2023) (cited on pages 19–22, 46, 58, 59, 85).
[105] Mark Niklas Müller, Franziska Eckert, Marc Fischer, and Martin Vechev. ‘Certified Training: Small

Boxes are All You Need’. In: International Conference on Learning Representations. 2023 (cited on
pages 19–21, 46, 58, 59, 70, 85).

[106] Rich Caruana. ‘Multitask Learning’. In: Machine Learning 28.1 (July 1, 1997), pp. 41–75. doi: 10.1023/A:
1007379606734 (cited on page 20).

[107] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane Boning,
and Cho-Jui Hsieh. ‘Towards Stable and Efficient Training of Verifiably Robust Neural Networks’. In:
International Conference on Learning Representations. 2020 (cited on pages 20, 21, 25, 70, 86, 90, 91).

[108] Bohang Zhang, Du Jiang, Di He, and Liwei Wang. ‘Rethinking Lipschitz Neural Networks for Certified
L-infinity Robustness’. In: arXiv preprint arXiv:2210.01787 (2022) (cited on page 21).

[109] Yuhao Mao, Mark Niklas Müller, Marc Fischer, and Martin Vechev. ‘Understanding certified training
with interval bound propagation’. In: International Conference on Learning Representations (2024) (cited
on page 21).

[110] Jianlin Li, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei Huang, and Lĳun Zhang. ‘Analyzing
Deep Neural Networks with Symbolic Propagation: Towards Higher Precision and Faster Verification’.
In: Static Analysis - 26th International Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019, Proceedings.
Ed. by Bor-Yuh Evan Chang. Vol. 11822. Lecture Notes in Computer Science. Springer, 2019, pp. 296–
319. doi: 10.1007/978-3-030-32304-2_15 (cited on page 24).

[111] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. ‘Efficient Formal Safety
Analysis of Neural Networks’. In: Advances in Neural Information Processing Systems 31. Ed. by S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates, Inc.,
2018, pp. 6367–6377 (cited on pages 25, 40).

[112] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. ‘Boosting Robustness Certifica-
tion of Neural Networks’. In: International Conference on Learning Representations (ICLR). 2019 (cited on
pages 25, 32, 35, 40).

[113] Antoine Girard. ‘Reachability of Uncertain Linear Systems Using Zonotopes’. In: Hybrid Systems:

Computation and Control. Ed. by Manfred Morari and Lothar Thiele. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 291–305 (cited on page 26).

[114] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. ‘The Zonotope Abstract Domain Taylor1+’. In:
Computer Aided Verification. Ed. by Ahmed Bouajjani and Oded Maler. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 627–633 (cited on page 26).

[115] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. ‘A Convex Relaxation
Barrier to Tight Robustness Verification of Neural Networks’. In: Advances in Neural Information

Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and
R. Garnett. Curran Associates, Inc., 2019, pp. 9835–9846 (cited on pages 26, 41).

https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1007/978-3-030-32304-2_15

[116] L. Li, Linyi Li, Xiangyu Qi, Tao Xie, and Bo Li. ‘SoK: Certified Robustness for Deep Neural Networks’.
In: 2023 IEEE Symposium on Security and Privacy (SP) (2020), pp. 1289–1310 (cited on page 26).

[117] Andrew L. Maas. ‘Rectifier Nonlinearities Improve Neural Network Acoustic Models’. In: 2013 (cited
on page 26).

[118] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. ‘Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification’. In: Proceedings of the IEEE international conference

on computer vision. 2015, pp. 1026–1034 (cited on pages 26, 27).
[119] Alex Krizhevsky. ‘Convolutional deep belief networks on cifar-10’. In: Unpublished (2010) (cited on

pages 26, 27).
[120] P Henriksen and A Lomuscio. ‘Efficient Neural Network Verification via Adaptive Refinement and

Adversarial Search’. In: ECAI 2020 proceedings. 2020 (cited on pages 26, 27, 40).
[121] Zhaodi Zhang, Yiting Wu, Siwen Liu, Jing Liu, and Min Zhang. ‘Provably Tightest Linear Approxima-

tion for Robustness Verification of Sigmoid-like Neural Networks’. In: Proceedings of the 37th IEEE/ACM

International Conference on Automated Software Engineering (2022) (cited on pages 26, 27).
[122] Yunruo Zhang, Lujia Shen, Shanqing Guo, and Shouling Ji. ‘GaLileo: General Linear Relaxation

Framework for Tightening Robustness Certification of Transformers’. In: AAAI Conference on Artificial

Intelligence. 2024 (cited on pages 26, 27).
[123] Zhouxing Shi, Qirui Jin, Zico Kolter, Suman Jana, Cho-Jui Hsieh, and Huan Zhang. ‘Neural Network

Verification with Branch-and-Bound for General Nonlinearities’. In: Tools and Algorithms for the

Construction and Analysis of Systems. Ed. by Arie Gurfinkel and Marĳn Heule. Cham: Springer Nature
Switzerland, 2025, pp. 315–335 (cited on pages 26, 27, 41).

[124] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. ‘PyTorch: An Imperative Style, High-Performance Deep Learning
Library’. In: Neural Information Processing Systems (2019) (cited on pages 26, 27, 50).

[125] Nikola Jovanović, Mislav Balunovic, Maximilian Baader, and Martin Vechev. ‘On the Paradox of
Certified Training’. In: Transactions on Machine Learning Research (2022) (cited on pages 27, 70).

[126] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. ‘An Abstraction-Based Framework for
Neural Network Verification’. In: CoRR abs/1910.14574 (2019) (cited on pages 27, 41).

[127] Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stanley Bak. ‘Open-and closed-loop
neural network verification using polynomial zonotopes’. In: NASA Formal Methods Symposium.
Springer. 2023, pp. 16–36 (cited on page 27).

[128] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. ‘Fast
and Complete: Enabling Complete Neural Network Verification with Rapid and Massively Parallel
Incomplete Verifiers’. In: International Conference on Learning Representations. 2021 (cited on page 28).

[129] Serge Durand, Augustin Lemesle, Zakaria Chihani, Caterina Urban, and François Terrier. ‘ReCIPH:
Relational Coefficients for Input Partitioning Heuristic’. In: workshop on Formal Verification of Machine

Learning (WFVML 2022) (2022) (cited on page 31).
[130] Kyle D. Julian, Jessica Lopez, Jeffrey S. Brush, Michael P. Owen, and Mykel J. Kochenderfer. ‘Policy

compression for aircraft collision avoidance systems’. In: 2016 IEEE/AIAA 35th Digital Avionics Systems

Conference (DASC). 2016, pp. 1–10. doi: 10.1109/DASC.2016.7778091 (cited on pages 31, 35).
[131] Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. ‘Reluplex: An Efficient

SMT Solver for Verifying Deep Neural Networks’. In: arXiv preprint arXiv:1702.01135 (2017) (cited on
pages 31, 32, 35, 40, 41).

[132] Davide Corsi, Enrico Marchesini, and Alessandro Farinelli. ‘Evaluating the Safety of Deep Reinforce-
ment Learning Models using Semi-Formal Verification’. In: CoRR abs/2010.09387 (2020) (cited on
page 33).

[133] Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. ‘Deep neural network compression
for aircraft collision avoidance systems’. In: Journal of Guidance Control and Dynamics 42.3 (2019),
pp. 598–608. doi: 10.2514/1.G003724 (cited on page 35).

https://doi.org/10.1109/DASC.2016.7778091
https://doi.org/10.2514/1.G003724

[134] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. ‘Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks’. In: Computer Aided Verification. Ed. by Rupak
Majumdar and Viktor Kunčak. Cham: Springer International Publishing, 2017, pp. 97–117 (cited on
pages 35, 37, 76, 95).

[135] Djoni E. Sidarta, Jim O’Sullivan, and Ho-Joon Lim. ‘Damage Detection of Offshore Platform Mooring
Line Using Artificial Neural Network’. In: vol. Volume 1: Offshore Technology. International Conference
on Offshore Mechanics and Arctic Engineering. June 2018. doi: 10.1115/OMAE2018-77084 (cited on
page 37).

[136] Djoni E. Sidarta, Ho-Joon Lim, Johyun Kyoung, Nicolas Tcherniguin, Timothee Lefebvre, and Jim
O’Sullivan. ‘Detection of Mooring Line Failure of a Spread-Moored FPSO: Part 1 — Development
of an Artificial Neural Network Based Model’. In: vol. Volume 1: Offshore Technology; Offshore
Geotechnics. International Conference on Offshore Mechanics and Arctic Engineering. V001T01A042.
June 2019. doi: 10.1115/OMAE2019-96288 (cited on page 37).

[137] Luca Pulina and Armando Tacchella. ‘Challenging SMT solvers to verify neural networks’. In: AI

Commun. 25.2 (2012), pp. 117–135. doi: 10.3233/AIC-2012-0525 (cited on page 40).
[138] Rüdiger Ehlers. ‘Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks’. In: ArXiv

abs/1705.01320 (2017) (cited on page 40).
[139] Xiaowei Huang, M. Kwiatkowska, Sen Wang, and Min Wu. ‘Safety Verification of Deep Neural

Networks’. In: International Conference on Computer Aided Verification. 2016 (cited on page 40).
[140] Vincent Tjeng, Kai Xiao, and Russ Tedrake. ‘Evaluating Robustness of Neural Networks with Mixed

Integer Programming’. In: International Conference on Learning Representations (ICLR). 2019.
(Visited on 06/19/2019) (cited on page 40).

[141] Philipp Kern, Marko Kleine Büning, and Carsten Sinz. ‘Optimized symbolic interval propagation for
neural network verification’. In: arXiv preprint arXiv:2212.08567 (2022) (cited on page 40).

[142] Lukas Koller, Tobias Ladner, and Matthias Althoff. ‘Out of the Shadows: Exploring a Latent Space for
Neural Network Verification’. In: ArXiv abs/2505.17854 (2025) (cited on page 40).

[143] Matthias Althoff. ‘An Introduction to CORA 2015’. In: EPiC Series in Computing. EasyChair, 2015. doi:
10.29007/zbkv (cited on page 40).

[144] Vicenç Rúbies Royo, Roberto Calandra, Dusan M. Stipanovic, and Claire Tomlin. ‘Fast Neural Network
Verification via Shadow Prices’. In: CoRR abs/1902.07247 (2019) (cited on page 40).

[145] Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Taylor T. Johnson. ‘Improved Geometric Path
Enumeration for Verifying ReLU Neural Networks’. In: 32nd International Conference on Computer-Aided

Verification (CAV). Sept. 2020. doi: 10.1007/978-3-030-53288-8_4 (cited on pages 40, 41).
[146] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen,

Weiming Xiang, and Taylor T. Johnson. ‘Star-Based Reachability Analysis of Deep Neural Networks’.
In: Formal Methods – The Next 30 Years: Third World Congress, FM 2019, Porto, Portugal, October 7–11, 2019,

Proceedings. Porto, Portugal: Springer-Verlag, 2019, pp. 670–686. doi: 10.1007/978-3-030-30942-8_39
(cited on page 41).

[147] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel Kochenderfer, and
Clark Barrett. ‘The Marabou Framework for Verification and Analysis of Deep Neural Networks’. In:
To appear in Proceedings of the 31𝑠𝑡 International Conference on Computer Aided Verification (CAV ’19). Sept.
2019 (cited on pages 41, 75).

[148] Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H.S. Torr, Pushmeet Kohli, and M. Pawan Kumar.
‘Branch and Bound for Piecewise Linear Neural Network Verification’. In: Journal of Machine Learning

Research 21.42 (2020), pp. 1–39 (cited on page 41).
[149] Jingyue Lu and M. Pawan Kumar. ‘Neural Network Branching for Neural Network Verification’. In:

International Conference on Learning Representations. 2020 (cited on pages 41, 96).
[150] Krishnamurthy Dvĳotham, Robert Stanforth, Sven Gowal, Timothy Mann, and Pushmeet Kohli. ‘A

dual approach to scalable verification of deep networks’. In: Conference on Uncertainty in Artificial

Intelligence (2018) (cited on page 41).

https://doi.org/10.1115/OMAE2018-77084
https://doi.org/10.1115/OMAE2019-96288
https://doi.org/10.3233/AIC-2012-0525
https://doi.org/10.29007/zbkv
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-30942-8_39

[151] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. ‘Beta-
CROWN: Efficient bound propagation with per-neuron split constraints for complete and incomplete
neural network verification’. In: Neural Information Processing Systems (2021) (cited on page 41).

[152] Alessandro De Palma, Rudy Bunel, Alban Desmaison, Krishnamurthy Dvĳotham, Pushmeet Kohli,
Philip H. S. Torr, and M. Pawan Kumar. Improved Branch and Bound for Neural Network Verification via

Lagrangian Decomposition. 2021. url: https://arxiv.org/abs/2104.06718 (cited on page 41).
[153] Huan Zhang, Shiqi Wang, Kaidi Xu, Yihan Wang, Suman Jana, Cho-Jui Hsieh, and Zico Kolter. ‘A

Branch and Bound Framework for Stronger Adversarial Attacks of ReLU Networks’. In: Proceedings of

the 39th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato. Vol. 162. Proceedings of Machine Learning
Research. PMLR, Sept. 2022, pp. 26591–26604 (cited on page 41).

[154] Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
‘General Cutting Planes for Bound-Propagation-Based Neural Network Verification’. In: Neural

Information Processing Systems (2022) (cited on page 41).
[155] Duo Zhou, Christopher Brix, Grani A Hanasusanto, and Huan Zhang. ‘Scalable Neural Network

Verification with Branch-and-bound Inferred Cutting Planes’. In: Advances in Neural Information

Processing Systems. Ed. by A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and
C. Zhang. Vol. 37. Curran Associates, Inc., 2024, pp. 29324–29353 (cited on page 41).

[156] Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin Vechev. ‘Beyond the single neuron
convex barrier for neural network certification’. In: Neural Information Processing Systems (2019) (cited
on page 41).

[157] Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. ‘Strong
mixed-integer programming formulations for trained neural networks’. In: Mathematical Programming

(2020) (cited on page 41).
[158] Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, Krunal Patel, and Juan Pablo

Vielma. ‘The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron Relaxations for Neural
Network Verification’. In: Neural Information Processing Systems (2020) (cited on page 41).

[159] Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip H. S. Torr, and M. Pawan Kumar.
‘Scaling the Convex Barrier with Sparse Dual Algorithms’. In: Journal of Machine Learning Research

(2024) (cited on pages 41, 70).
[160] Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip H. S. Torr, and M. Pawan Kumar.

‘Scaling the Convex Barrier with Active Sets’. In: International Conference on Learning Representations

(2021) (cited on page 41).
[161] Sumanth Dathathri, Krishnamurthy Dvĳotham, Alexey Kurakin, Aditi Raghunathan, Jonathan Uesato,

Rudy R Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy S Liang, and Pushmeet
Kohli. ‘Enabling certification of verification-agnostic networks via memory-efficient semidefinite
programming’. In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 5318–5331 (cited on
page 42).

[162] Hong-Ming Chiu, Hao Chen, Huan Zhang, and Richard Y. Zhang. ‘SDP-CROWN: Efficient Bound
Propagation for Neural Network Verification with Tightness of Semidefinite Programming’. In:
Forty-second International Conference on Machine Learning. 2025 (cited on page 42).

[163] Zhouxing Shi, Yihan Wang, Huan Zhang, Zico Kolter, and Cho-Jui Hsieh. ‘Efficiently computing local
lipschitz constants of neural networks via bound propagation’. In: Proceedings of the 36th International

Conference on Neural Information Processing Systems. NIPS ’22. New Orleans, LA, USA: Curran Associates
Inc., 2022 (cited on page 42).

[164] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. ‘Efficient
and Accurate Estimation of Lipschitz Constants for Deep Neural Networks’. In: Advances in Neural

Information Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
and R. Garnett. Vol. 32. Curran Associates, Inc., 2019 (cited on page 42).

[165] Yuhao Zhang, Aws Albarghouthi, and Loris D’antoni. ‘Certified Robustness to Programmable
Transformations in LSTMs’. In: ArXiv abs/2102.07818 (2021) (cited on page 42).

https://arxiv.org/abs/2104.06718

[166] Bohang Zhang, Du Jiang, Di He, and Liwei Wang. ‘Rethinking Lipschitz Neural Networks and
Certified Robustness: A Boolean Function Perspective’. In: Neural Information Processing Systems. 2022
(cited on page 42).

[167] Cem Anil, James Lucas, and Roger Grosse. ‘Sorting out Lipschitz function approximation’. In:
International conference on machine learning. PMLR. 2019, pp. 291–301 (cited on page 42).

[168] Alexandre Araujo, Aaron J Havens, Blaise Delattre, Alexandre Allauzen, and Bin Hu. ‘A Unified
Algebraic Perspective on Lipschitz Neural Networks’. In: The Eleventh International Conference on

Learning Representations. 2023 (cited on page 42).
[169] Klas Leino, Zifan Wang, and Matt Fredrikson. ‘Globally-robust neural networks’. In: International

Conference on Machine Learning. PMLR. 2021, pp. 6212–6222 (cited on page 42).
[170] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. ‘Reading

Digits in Natural Images with Unsupervised Feature Learning’. In: NIPS Workshop on Deep Learning

and Unsupervised Feature Learning 2011. 2011 (cited on pages 47, 50).
[171] A. Krizhevsky and G. Hinton. ‘Learning multiple layers of features from tiny images’. In: Master’s

thesis, Department of Computer Science, University of Toronto (2009) (cited on page 50).
[172] Akhilan Boopathy, Lily Weng, Sĳia Liu, Pin-Yu Chen, Gaoyuan Zhang, and Luca Daniel. ‘Fast Training

of Provably Robust Neural Networks by SingleProp’. In: Proceedings of the AAAI Conference on Artificial

Intelligence. Vol. 35. 8. 2021, pp. 6803–6811 (cited on page 69).
[173] Piersilvio De Bartolomeis, Jacob Clarysse, Amartya Sanyal, and Fanny Yang. ‘How robust accuracy

suffers from certified training with convex relaxations’. In: arXiv preprint arXiv:2306.06995 (2023)
(cited on pages 69, 70).

[174] Yuhao Mao, Stefan Balauca, and Martin Vechev. ‘CTBench: A Library and Benchmark for Certified
Training’. In: Forty-second International Conference on Machine Learning. 2025 (cited on pages 69–71, 76,
88).

[175] Joao Marques-Silva. ‘Logic-Based Explainability in Machine Learning’. In: ArXiv abs/2211.00541
(2022) (cited on pages 73–75).

[176] Min Wu, Xiaofu Li, Haoze Wu, and Clark W. Barrett. ‘Better Verified Explanations with Applications to
Incorrectness and Out-of-Distribution Detection’. In: ArXiv abs/2409.03060 (2024) (cited on pages 73,
76, 77, 81, 82, 89, 90).

[177] Dorin Doncenco, Julien Girard-Satabin, Romain Xu-Darme, and Zakaria Chihani. ‘A Dive into Formal
Explainable Attributions for Image Classification’. In: Proceedings of the 28th European Conference on

Artificial Intelligence (ECAI 2025). Bologna, Italy: IOS Press, 2025 (cited on pages 73, 81, 89, 90).
[178] Yacine Izza, Xuanxiang Huang, Antonio Morgado, Jordi Planes, Alexey Ignatiev, and Joao Marques-

Silva. ‘Distance-restricted explanations: theoretical underpinnings & efficient implementation’. In:
arXiv preprint arXiv:2405.08297 (2024) (cited on pages 73, 90).

[179] Zhouxing Shi, Yihan Wang, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. ‘Fast certified robust training
with short warmup’. In: Advances in Neural Information Processing Systems 34 (2021), pp. 18335–18349
(cited on pages 73, 74).

[180] Matthew Mirman, Gagandeep Singh, and Martin Vechev. ‘A Provable Defense for Deep Residual
Networks’. In: 2019 (cited on pages 73, 74).

[181] Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T Johnson. ‘The Third
International Verification of Neural Networks Competition (VNN-COMP 2022): Summary and
Results’. In: arXiv preprint arXiv:2212.10376 (2022) (cited on pages 73, 74).

[182] Christoph Molnar. Interpretable Machine Learning. A Guide for Making Black Box Models Explainable.
3rd ed. 2025 (cited on pages 73, 74).

[183] Melkamu Mersha, Khang Lam, Joseph Wood, Ali K. AlShami, and Jugal Kalita. ‘Explainable artificial
intelligence: A survey of needs, techniques, applications, and future direction’. In: Neurocomputing

599 (Sept. 2024), p. 128111. doi: 10.1016/j.neucom.2024.128111 (cited on pages 73, 74).
[184] Scott M Lundberg and Su-In Lee. ‘A unified approach to interpreting model predictions’. In: Advances

in neural information processing systems 30 (2017) (cited on page 74).

https://doi.org/10.1016/j.neucom.2024.128111

[185] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. ‘Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization’.
In: 2017 IEEE International Conference on Computer Vision (ICCV). 2017, pp. 618–626. doi: 10.1109/ICCV.
2017.74 (cited on page 74).

[186] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. ‘On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise
Relevance Propagation’. In: PLoS ONE 10 (2015) (cited on page 74).

[187] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for

Simplicity: The All Convolutional Net. 2015. url: https://arxiv.org/abs/1412.6806 (cited on
page 74).

[188] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. ‘Learning important features through
propagating activation differences’. In: International conference on machine learning. PMLR. 2017,
pp. 3145–3153 (cited on page 74).

[189] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. ‘Towards better understanding
of gradient-based attribution methods for Deep Neural Networks’. In: International Conference on

Learning Representations. 2018 (cited on page 74).
[190] Nina Narodytska, Aditya Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and Joao Marques-Silva. ‘Assessing

Heuristic Machine Learning Explanations with Model Counting’. In: Theory and Applications of

Satisfiability Testing – SAT 2019. Ed. by Mikoláš Janota and Inês Lynce. Cham: Springer International
Publishing, 2019, pp. 267–278 (cited on page 74).

[191] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. ‘Sanity
checks for saliency maps’. In: Advances in neural information processing systems 31 (2018) (cited on
page 74).

[192] Romain Xu-Darme, Jenny Benois-Pineau, Romain Giot, Georges Quénot, Zakaria Chihani, Marie-
Christine Rousset, and Alexey Zhukov. ‘On the stability, correctness and plausibility of visual
explanation methods based on feature importance’. In: Proceedings of the 20th International Conference

on Content-based Multimedia Indexing. 2023, pp. 119–125 (cited on page 74).
[193] Anna Hedström, Philine Lou Bommer, Kristoffer Knutsen Wickstrøm, Wojciech Samek, Sebastian

Lapuschkin, and Marina MC Höhne. ‘The Meta-Evaluation Problem in Explainable AI: Identifying
Reliable Estimators with MetaQuantus’. In: Transactions on Machine Learning Research (2023) (cited on
page 74).

[194] Andy Shih, Arthur Choi, and Adnan Darwiche. ‘A symbolic approach to explaining bayesian network
classifiers’. In: arXiv preprint arXiv:1805.03364 (2018) (cited on pages 74, 75).

[195] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. ‘Abduction-based explanations for
machine learning models’. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01.
2019, pp. 1511–1519 (cited on pages 74, 75).

[196] Emanuele La Malfa, Rhiannon Michelmore, Agnieszka M. Zbrzezny, Nicola Paoletti, and Marta
Kwiatkowska. ‘On Guaranteed Optimal Robust Explanations for NLP Models’. In: Proceedings of the

Thirtieth International Joint Conference on Artificial Intelligence, ĲCAI-21. Ed. by Zhi-Hua Zhou. Main
Track. International Joint Conferences on Artificial Intelligence Organization, Aug. 2021, pp. 2658–
2665. doi: 10.24963/ijcai.2021/366 (cited on pages 74, 75, 96).

[197] Shahaf Bassan, Guy Amir, and Guy Katz. ‘Local vs. Global Interpretability: A Computational
Complexity Perspective’. In: Forty-first International Conference on Machine Learning. 2024 (cited on
page 75).

[198] Haoze Wu, Omri Isac, Aleksandar Zeljić, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan
Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min Zhang, Ekaterina
Komendantskaya, Guy Katz, and Clark Barrett. ‘Marabou 2.0: A Versatile Formal Analyzer of Neural
Networks’. In: Computer Aided Verification: 36th International Conference, CAV 2024, Montreal, QC, Canada,

July 24–27, 2024, Proceedings, Part II. Montreal, QC, Canada: Springer-Verlag, 2024, pp. 249–264. doi:
10.1007/978-3-031-65630-9_13 (cited on page 76).

[199] Diederik P Kingma and Jimmy Ba. ‘Adam: A method for stochastic optimization’. In: arXiv preprint

arXiv:1412.6980 (2014) (cited on page 86).

https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://arxiv.org/abs/1412.6806
https://doi.org/10.24963/ijcai.2021/366
https://doi.org/10.1007/978-3-031-65630-9_13

[200] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. ‘The German Traffic Sign
Recognition Benchmark: A multi-class classification competition’. In: The 2011 International Joint

Conference on Neural Networks. 2011, pp. 1453–1460. doi: 10.1109/IJCNN.2011.6033395 (cited on
page 89).

[201] Ulrich Junker. ‘QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems’.
In: Proceedings of the 19th National Conference on Artifical Intelligence. AAAI’04. San Jose, California:
AAAI Press, 2004, pp. 167–172 (cited on page 90).

[202] Shahaf Bassan, Yizhak Yisrael Elboher, Tobias Ladner, Matthias Althoff, and Guy Katz. ‘Explaining,
Fast and Slow: Abstraction and Refinement of Provable Explanations’. In: Forty-second International

Conference on Machine Learning. 2025 (cited on page 90).
[203] Tobias Ladner and Matthias Althoff. ‘Fully Automatic Neural Network Reduction for Formal

Verification’. In: Transactions on Machine Learning Research (2025) (cited on page 90).
[204] Shahaf Bassan, Ron Eliav, and Shlomit Gur. ‘Explain Yourself, Briefly! Self-Explaining Neural Networks

with Concise Sufficient Reasons’. In: The Thirteenth International Conference on Learning Representations.
2025 (cited on page 90).

[205] Ruth C. Fong and Andrea Vedaldi. ‘Interpretable Explanations of Black Boxes by Meaningful
Perturbation’. In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, Oct. 2017. doi:
10.1109/iccv.2017.371 (cited on page 91).

[206] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ‘Anchors: high-precision model-agnostic
explanations’. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth

Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational

Advances in Artificial Intelligence. AAAI’18/IAAI’18/EAAI’18. New Orleans, Louisiana, USA: AAAI
Press, 2018 (cited on page 91).

[207] Brandon Carter, Jonas Mueller, Siddhartha Jain, and David Gifford. ‘What made you do this?
Understanding black-box decisions with sufficient input subsets’. In: Proceedings of the Twenty-Second

International Conference on Artificial Intelligence and Statistics. Ed. by Kamalika Chaudhuri and Masashi
Sugiyama. Vol. 89. Proceedings of Machine Learning Research. PMLR, Apr. 2019, pp. 567–576 (cited
on page 91).

[208] Thomas Fel, Mélanie Ducoffe, David Vigouroux, Rémi Cadène, Mikael Capelle, Claire Nicodème,
and Thomas Serre. ‘Don’t Lie to Me! Robust and Efficient Explainability with Verified Perturbation
Analysis’. In: Proceedings of the IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR).
Vancouver, Canada: IEEE, June 2023. doi: 10.1109/cvpr52729.2023.01550 (cited on page 91).

[209] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. ‘Attention is all you need’. In: Advances in neural information processing

systems 30 (2017) (cited on page 97).
[210] Gregory Bonaert, Dimitar I. Dimitrov, Maximilian Baader, and Martin T. Vechev. ‘Fast and precise

certification of transformers’. In: Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (2021) (cited on page 97).
[211] Satoshi Munakata, Caterina Urban, Haruki Yokoyama, Koji Yamamoto, and Kazuki Munakata.

‘Verifying Attention Robustness of Deep Neural Networks against Semantic Perturbations’. In: ArXiv

abs/2207.05902 (2022) (cited on page 97).
[212] Daqian Shao, Lukas Fesser, and Marta Z. Kwiatkowska. ‘STR-Cert: Robustness Certification for Deep

Text Recognition on Deep Learning Pipelines and Vision Transformers’. In: ArXiv abs/2401.05338
(2023) (cited on page 97).

[213] Anagha Athavale, Ezio Bartocci, Maria Christakis, Matteo Maffei, Dejan Nickovic, and Georg
Weissenbacher. ‘Verifying Global Two-Safety Properties in Neural Networks with Confidence’.
In: Computer Aided Verification. Ed. by Arie Gurfinkel and Vĳay Ganesh. Cham: Springer Nature
Switzerland, 2024, pp. 329–351 (cited on page 97).

[214] David Boetius and Stefan Leue. Verifying Global Neural Network Specifications using Hyperproperties.
2023. url: https://arxiv.org/abs/2306.12495 (cited on page 97).

[215] Debangshu Banerjee, Changming Xu, and Gagandeep Singh. ‘Input-Relational Verification of Deep
Neural Networks’. In: Proc. ACM Program. Lang. 8.PLDI (June 2024). doi: 10.1145/3656377 (cited on
page 97).

https://doi.org/10.1109/IJCNN.2011.6033395
https://doi.org/10.1109/iccv.2017.371
https://doi.org/10.1109/cvpr52729.2023.01550
https://arxiv.org/abs/2306.12495
https://doi.org/10.1145/3656377

[216] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. ‘Adversarial examples are not bugs, they are features’. In: Advances in neural information

processing systems 32 (2019) (cited on page 97).
[217] Christian Etmann, Sebastian Lunz, Peter Maass, and Carola Schönlieb. ‘On the Connection Between

Adversarial Robustness and Saliency Map Interpretability’. In: Proceedings of the 36th International

Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Ed. by Kamalika
Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,
2019, pp. 1823–1832 (cited on page 97).

[218] Prasad Chalasani, Jiefeng Chen, Amrita Roy Chowdhury, Xi Wu, and Somesh Jha. ‘Concise Explana-
tions of Neural Networks using Adversarial Training’. In: Proceedings of the 37th International Conference

on Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning
Research. PMLR, July 2020, pp. 1383–1391 (cited on page 97).

[219] Suraj Srinivas, Sebastian Bordt, and Himabindu Lakkaraju. ‘Which Models have Perceptually-Aligned
Gradients? An Explanation via Off-Manifold Robustness’. In: Thirty-seventh Conference on Neural

Information Processing Systems. 2023 (cited on pages 97, 98).
[220] Andrew Slavin Ross and Finale Doshi-Velez. ‘Improving the Adversarial Robustness and Interpretabil-

ity of Deep Neural Networks by Regularizing their Input Gradients’. In: AAAI Conference on Artificial

Intelligence. 2017 (cited on page 97).
[221] Akhilan Boopathy, Sĳia Liu, Gaoyuan Zhang, Cynthia Liu, Pin-Yu Chen, Shiyu Chang, and Luca Daniel.

‘Proper Network Interpretability Helps Adversarial Robustness in Classification’. In: International

Conference on Machine Learning. 2020 (cited on page 97).
[222] Roy Ganz, Bahjat Kawar, and Michael Elad. ‘Do Perceptually Aligned Gradients Imply Robustness?’

In: Proceedings of the 40th International Conference on Machine Learning. Ed. by Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett. Vol. 202.
Proceedings of Machine Learning Research. PMLR, July 2023, pp. 10628–10648 (cited on page 97).

[223] Sunghwan Joo, SeokHyeon Jeong, Juyeon Heo, Adrian Weller, and Taesup Moon. ‘Towards More
Robust Interpretation via Local Gradient Alignment’. In: Proceedings of the AAAI Conference on Artificial

Intelligence 37.7 (June 2023), pp. 8168–8176. doi: 10.1609/aaai.v37i7.25986 (cited on page 97).
[224] Debangshu Banerjee, Avaljot Singh, and Gagandeep Singh. ‘Interpreting Robustness Proofs of Deep

Neural Networks’. In: The Twelfth International Conference on Learning Representations. 2024 (cited on
page 97).

[225] Mathieu Serrurier, Franck Mamalet, Thomas Fel, Louis Béthune, and Thibaut Boissin. ‘On the
explainable properties of 1-Lipschitz Neural Networks: An Optimal Transport Perspective’. In: 2022
(cited on page 97).

https://doi.org/10.1609/aaai.v37i7.25986

