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The need for trustworthy Al
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The Al Incident Database https://incidentdatabase.ai/

More than 1200 incidents reported!
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More than 1200 incidents reported!
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More than 1200 incidents reported!
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Aspects of Trustworthiness

Verification

Proving the model has the
desired behavior
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Aspects of Trustworthiness

Verification

Proving the model has the
desired behavior

Correct

Robust training

Enforcing the stable prediction
on similar inputs at training time
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Aspects of Trustworthiness

Verification

Proving the model has the
desired behavior

Correct

Robust training

Enforcing the stable prediction
on similar inputs at training time

Explainability

Highlight the reason behind the
decision of the model
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Verifying Neural
m Networks
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@ Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks [Katz 2017] 5/51
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Property: If the intruder is directly ahead and is moving towards the ownship, the Clear of Conflict command should not be advised

@ Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks [Katz 2017] 5/51




Verification of Neural Networks
Input-output properties
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Exact Verification
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Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks [Katz 2017] 7151
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Exact Verification

NP-Complete [Katz2017] W
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Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks [Katz 2017]
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Over-approximating Neural Networks
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Over-approximating Neural Networks
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Over-approximations for verification
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Over-approximations for verification
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Input partitioning

Formal Security Analysis of Neural Networks using Symbolic Intervals [Wang 2018] 1/51




Input partitioning
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Input partitioning
Correct

]
- I

Error4 > X =X UX,

False Alarm ? 1) Partition the input
space

Formal Security Analysis of Neural Networks using Symbolic Intervals [Wang 2018]
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Input partitioning
Correct
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Error4 > X =X UX,

False Alarm ? 1) Partition the input

space

Formal Security Analysis of Neural Networks using Symbolic Intervals [Wang 2018]
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Iterative input partitioning




Iterative input partitioning

X1: [-1,1]
X2: [-1,1]




Iterative input partitioning

X1: [-1,1]
X2: [-1,1]




Iterative input partitioning
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Iterative input partitioning




“Real life” example

e Industrial Use Case

* 3133 subproblems to solve!
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Existing heuristics:

« Random
 Largest interval
« Gradient Smear [ReluVal, Wang 2018]

g Formal Security Analysis of Neural Networks using Symbolic Intervals [Wang 2018] 14/ 51




Existing heuristics:

« Random

Over-approximation of the outputs

* Largest interval (symbolic intervals for ReluVal)
« Gradient Smear [ReluVal, Wang 2018]

backward pass to bound input gradients given pre-

computed output bounds.

Final score: largest upper bound times input width

g Formal Security Analysis of Neural Networks using Symbolic Intervals [Wang 2018] 14/ 51




Existing heuristics:

Random

Over-approximation of the outputs

Largest interval (symbolic intervals for ReluVal)
Gradient Smear [ReluVal, Wang 2018]

Our proposal: reuse information

already computed during the

over-approximation

backward pass to bound input gradients given pre-

computed output bounds.

Final score: largest upper bound times input width

E Formal Security Analysis of Neural Networks using Symbolic Intervals [Wang 2018] 14/ 51




ReCIPH: (Relational coefficient for input partitioning
heuristic)
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ReCIPH: (Relational coefficient for input partitioning
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ReCIPH: (Relational coefficient for input partitioning
heuristic)

Vo € X, L(z) < fo(2) SU) L= az Ulw)=Y @s
i=1 i=1
la;| + | ]
. ReCIPH score for the input x; = — > (u; = 1)

 Variable to split first: highest ReCIPH score

=
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Reported metric: number of subproblems

ACAS Xu benchmark

Properties Width ReCIPH Gradient Smear
1 68 567 15289 16 521
3 319 306 16 140 209 924
4 25906 1828 2206
5 142 637 7023 29 169
9 3055 2 395 3877
10 1331 335 217

171 51



Wider applicability

* LIBRA (Fairness analysis)

BIASED

g LIBRA https://caterinaurban.github.io/project/libra/ 18/ 51
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Wider applicability

* LIBRA (Fairness analysis)

e

BIASED

* PYRAT : 6/12 benchmarks in VNN-COMP
2024 where PyRAT finished 2 / 8 tools

PYyRAT

@ VNN Comp 2024 report, Verifying Neural Networks with PyRAT [Lemesle 2025], The Fifth International Verification of Neural 18/ 51

Networks Competition (VNN-COMP 2024): Summary and Results [Brix 2024]




Wider applicability

* LIBRA (Fairness analysis)

iy

BIASED

* PyRAT : 6/12 benchmarks in VNN-COMP

2024 where PyRAT finished 2 / 8 tools é PyRAT

* Verification remains a hard challenge!

E VNN Comp 2024 report, Verifying Neural Networks with PyRAT [Lemesle 2025], The Fifth International Verification of Neural 18/ 51

Networks Competition (VNN-COMP 2024): Summary and Results [Brix 2024]
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Over-Approximations for
H Empirical Robustness




Local Robustness

@ Explaining and Harnessing Adversarial Examples [Goodfellow 2015] 20/ 51




Local Robustness

@ Explaining and Harnessing Adversarial Examples [Goodfellow 2015] 20/ 51




Local Robustness

Pandas (57.7% confidence)

@ Explaining and Harnessing Adversarial Examples [Goodfellow 2015] 20/ 51




Local Robustness

+.007 x

Pandas (57.7% confidence)

@ Explaining and Harnessing Adversarial Examples [Goodfellow 2015] 20/ 51




Local Robustness

+.007 x

Pandas (57.7% confidence) Gibbon (99.3% confidence)

@ Explaining and Harnessing Adversarial Examples [Goodfellow 2015] 20/ 51




Neural Network Supervised Training

g 21/ 51




Neural Network Supervised Training

Error of the prediction
(estimated with a loss function)

@ 21/ 51




Neural Network Supervised Training

After minimizing the error

Jo(x) X / >

Z

Updated parameters 6’
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Robust Training
Certified Training (CT)

Worst case of the over-approximation of
the reachable space

On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models [Gowal 2018] 23/ 51




Robust Training
Certified Training (CT)

Minimizing the worst-
case of the
approximation: leads to
tighter approximation

@

Updated parameters 6’

On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models [Gowal 2018] 24/ 51




Robust Training
Adversarial Training (AT)

fe(xadv)

Tado € X

@ On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models [Gowal 2018]

Output computed on an adversarial
perturbation

A

Qx

Z
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Robust Training

Adversarial Training (AT)
Minimizing the error on
adversarial perturbations:

A leads to better empirical
robustness

fH’(xadv) Q/ >
&

Updated parameters 0’

Ladv € X

@ On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models [Gowal 2018] 26/ 51




Combining Certified and Adversarial Training
(CT + AT)

A A ; ........................ E

_x_> — —
AT CT
1 : 1 .

@ Expressive Losses for Verified Robustness via Convex Combinations [De Palma 2024] 27151




Trade-offs

CIFAR-10, CNN-7, € = 8 / 255.

Training Method Standard (%) Empirical (%) Verified (%)

Standard 91.27

@ CTBench: A Library and Benchmark for Certified Training [Mao 2024] 28/ 51
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Trade-offs

CIFAR-10, CNN-7, € = 8 / 255.

Training Method Standard (%) Empirical (%) Verified (%)

Standard 91.27
AT 77.07 40.14 0
CT 48.51 35.48 34.97

@ CTBench: A Library and Benchmark for Certified Training [Mao 2024] 28/ 51




Trade-offs

CIFAR-10, CNN-7, € = 8 / 255.

Training Method Standard (%) Empirical (%) Verified (%)

Standard 91.27
AT 77.07 40.14
CT 48.51 35.48
CT +AT 53.35 36.02

@ CTBench: A Library and Benchmark for Certified Training [Mao 2024]

34.97
35.44
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Cost of adversarial training:

2e

PGD
rand

X

Towards Deep Learning Models Resistant to Adversarial Attacks [Madry 2018] 29/ 51




Single Step Training?

LFGSM

2e

FGSM

Explaining and Harnessing Adversarial Examples [Goodfellow 2015] 30/ 51




Catastrophic Overfitting

TFGSM CIFAR10, PreactResnet18, ¢ = 8/255
AN
1.0 : — =
o —— FGSM _ -
S 0.81 —— PGD-5 P
n /7
2 0.6 7 =
< _————=7""—____
g 0.4 — .
2¢ < == ;
~ 0.2
a N\
8 0.0 \
5 10 15 20 25 30
Epochs
M Robust Accuracy against multi-step attacks
FGSM -====: Robust Accuracy against single-step attacks
31/51

Fast is better than free: revisiting adversarial training [Wong 2020]




Mitigations

x5 4§

ran

* Noisy single steps attacks

RS-FGSM

Fast is better than free: revisiting adversarial training [Wong 2020], Make Some Noise: Reliable and Efficient Single-Step 32/ 51

Adversarial Training [De Jorge 2022]




Mitigations

rand

* Noisy single steps attacks

2ke

XN-FGSMX
RS-FGSM N-FGSM

Fast is better than free: revisiting adversarial training [Wong 2020], Make Some Noise: Reliable and Efficient Single-Step 32/ 51

Adversarial Training [De Jorge 2022]




Over-approximated output bounds
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Over-approximated output bounds

Over-approximations and catastrophic overfitting “‘

CIFAR10, PreactResnet18. Mean and 95% CI over 5 runs

 Bounds decrease with stronger attacks

« Adding noise is not enough to consistently

mitigate catastrophic overfitting?

8 16 24
Epsilon
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CT for Empirical Robustness

CIFAR10, PreactResnet18, ¢ = 8/255

=
o
;

—CT +FGSM == s T

« CT + FGSM can prevent catastrophic overfitting on I Fosm

FGSM
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CIFAR10, PreactResnet18

—— PGD-10
—— PGD-5
—— CT + N-FGSM
—— N-FGSM

 Also prevent CO and improves robustness for N-FGSM 0.251
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CT for Empirical Robustness
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AA Accuracy
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o u o

1

e

o
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0.00 A

Performance improvement (w.r.t underlying attack):
* On longer training schedules
* On easier datasets

* On shallower networks

CIFAR10, CNN-7, 30 Epochs

PGD-10
PGD-5

CT + N-FGSM
N-FGSM

12

16 20 24
Epsilon
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Can over-approximations be used beyond robustness?
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m for Explainability




Feature Attributions
Right for the wrong reasons, the need for Explainability

« ldentify inputs contributing to the network’s
decision: improve trust, help diagnose bad

models ...

=




Feature Attributions
Right for the wrong reasons, the need for Explainability

« ldentify inputs contributing to the network’s
decision: improve trust, help diagnose bad

models ...

« But what if the method does not highlight truly

important inputs?

=




Feature Attributions
Right for the wrong reasons, the need for Explainability

« ldentify inputs contributing to the network’s
decision: improve trust, help diagnose bad

models ...

« But what if the method does not highlight truly

important inputs?

@ CAM-Based Methods Can See through Walls [Taimeskhanov 2024] 38 /51
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Binary attribution: irrelevant or relevant

Irrelevant pixel: perturbing it (locally) does not change

the prediction (= provable robustness!)

Subset-Optimal: if perturbing any new pixel together

with the irrelevant features changes the prediction

Key metric: size of the irrelevant feature set (larger =

simpler explanation)

@ 39 /51




Formally Robust Explanations
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Formally Robust Explanations

Relevant
e .

» Each step: solving a verification problem!

* Active area of research to increase scalability

VeriX: Towards Verified Explainability of Deep Neural Networks [Wu 2023] 40/ 51




Over-approximations For Explainability

» Use over-approximations for scalability?

Relevant

VeriX: Towards Verified Explainability of Deep Neural Networks [Wu 2023], A dive into formal explainable attributions for image 41/ 51

classification [Doncenco 2025]




Over-approximations For Explainability

« Use over-approximations for scalability?

Too Many Unknowns!

VeriX: Towards Verified Explainability of Deep Neural Networks [Wu 2023], A dive into formal explainable attributions for image
classification [Doncenco 2025]

Irrelevant

Relevant

Unknown

41/ 51
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Over-approximations For Explainability

« Use over-approximations for scalability?

e Use robust models?

Everything Irrelevant! Unknowns might hide
Explanation is empty this possibility!




Training For Explainability
Our propositions:
* Make sure the entire input is Empirically Formally Explainable (EFX)
1. there exist a successful perturbation (empirically estimated)
2. there is at least one irrelevant feature (provably assessed with over-approximations)

e Use robust training with lowered robustness goal to prevent full irrelevancy

44 | 51
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Saliency map Mask top k %

=




Lowering the robustness goal
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Mask top k %

o

Ok 1

op - a) P
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* Adversarial training: lower the perturbation radius
« Expressive Losses: lower the coefficient associated with the IBP loss

« Train to be robust on a subset of inputs (Feature Subset Certified Training)

‘ Saliency man\

Mask top k %
H N
-

B




TinylmageNet, CNN-7

Perturbation Training Method Accuracy (%) 1 Avg Irrelevant set 1 # EFX(AA) 1
(# features: 4096) (samples: 1000)

Standard

Adversarial (1 /255)
4 /255
CT + Adv (0.5 / 255)

FS CT + Adv (2 / 255)

Standard
Adversarial (4 / 255)
8 /255
CT + Adv (1/255)

FS CT + Adv (4 / 255)

=




TinylmageNet, CNN-7

Perturbation Training Method Accuracy (%) 1 Avg Irrelevant set 1 # EFX(AA) 1
(# features: 4096) (samples: 1000)

Standard 54.80
Adversarial (1 /255) 52.61 340 911
4 /255
CT + AT (0.5/ 255) 4479 804 947
FS CT + AT (2 / 255) 48.60 506 996
Standard 54.80 6 887
Adversarial (4 / 255) 41.41 263 925
8 /255
CT + AT (1/255) 42.36 465 988
FS CT + AT (4 / 255) 44.49 684 998

* Non-trivial irrelevant features set on TinylmageNet!

» Feature Subset training offers better trade offs for large epsilon

47 | 51
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Contributions

1. ReCIPH: a heuristic to improve verification relying on partitioning and over-
approximations (Workshop Poster WFVML 2022)

2. Using Certified Training for Empirical Robustness (Journal TMLR 2025)

3. Using Certified Training to scale Formal Explainability (submission in
preparation)
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Automated input partitioning

(beyond bissection)

Verification of more complex

architectures

Verification of more complex

properties

@ Verifying Global Neural Network Specifications using Hyperproperties [Boetius 2023] 50 /51
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Verification Robust training Explainability
» Ever-going problem of efficiency  Ever-going problem of efficiency » Ever-going problem of efficiency
* Automated input partitioning * Re-visit tighter
(beyond bissection) approximation for
training?

Verification of more complex

architectures

Verification of more complex

properties

@ On the Paradox of Certified Training [Jovanovi¢ 2021], Gaussian Loss Smoothing Enables Certified Training with Tight Convex 50 / 51

Relaxations [Balauca 2024]
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@ Formal Abductive Latent Explanations for Prototype-Based Networks [Soria 2026]

Explainability

« Ever-going problem of efficiency
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training for explainability
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input level explanations ->
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* Over-approximations: versatile tool that can be leveraged in multiple ways to bring trust to Al systems

e Trust should be an integral part of the design / training choices!
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LIBRA (Fairness)

()

Coverage (%) Execution Time (s)

I
1 2
6
4 2
6

@ LIBRA https://caterinaurban.github.io/project/libra/

Width
68.8%
68.8%
100 %
100 %

ReCIPH
87.5%
87.5%
100 %
100 %

BIASED

Width
0.26
0.51
2.60
2.65

ReCIPH
0.11
0.20
2.10
210
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VNN Comp 2024

PyRAT with ReCIPH input partitioning is used for 6 out of 12 benchmarks

cGAN 1/6
LinearizeNN 1/4
Collins RUL CNN 517
TLL Verify Bench 1/8
ACAS Xu 3/8
Dist Shift 1/5

@ VNN Comp 2024 report https://arxiv.org/abs/2412.19985

First rank position are
shared with at least one
other tool.

Global ranking was 2 out
of 8 submitted tools

54/ 51


https://arxiv.org/abs/2412.19985

VNN Comp 2024

PyRAT with ReCIPH input partitioning is used for 6 out of 12 benchmarks

cGAN 1/6
LinearizeNN 1/4
Collins RUL CNN 517
TLL Verify Bench 1/8
ACAS Xu 3/8
Dist Shift 1/5

Verification is still a hard challenge!

@ VNN Comp 2024 report https://arxiv.org/abs/2412.19985

First rank position are
shared with at least one
other tool.

Global ranking was 2 out
of 8 submitted tools
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Local Linearity and Catastrophic Overfitting

Before Catastrophic Overfitting Decision Boundary Distortion Catastrophic Overfitting

Adversarial
example used
for training 0.76

L
1.5 ////// 7 , ~, cat

Robust =
against <
&

FGSM

dog




Source of approximations: handling of the non-linearities (activation functions) g
) Y Y
y=u
«\
//7\\6)
)
//7\\®
)
—1 9 -1 2 —1 2
(a) Exact ReLLU (b) Box approximation (c) Parallel Linear Approximation
) Y Y
9
v /4
/XS)X < //\‘:S)
NTa 3 « VN
x ‘ x }14 T
-1 2 —1 2 -1 2
(d) DeepPoly/CROWN (case u < —I) (e) DeepPoly/CROWN (case u > —I) (f) Parallel relaxation of tanh

Parallel: WK [Wong2017], FastLin [Weng2018], Neurify [Wang2018], DeepZ [Singh2019], CROWN [Zhang 2018], DeepPoly [Singh 2019]

(Non-exhaustive list) 56 / 51




Supervised Training (Classification)
£, NotPipda
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0 = arg meln ﬁ E ,C(fg (CCZ), yz) » Goal: empirical risk minimization. Expectation of the loss function over the dataset
1=1

0 < 0 —nVoL(fo(x),y) - Gradient Descent: Update of the parameters in the opposite direction of the
gradient to minimize the error.
Stochastic Gradient Descent (SGD): compute the gradients and do the update over
small batch of inputs randomly drawn from the dataset.
@ One epoch = one full pass over the dataset 57 | 51
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Supervised Training (Classification)
£, NotPipda

01 X
--------- »FC__ | < 02>
>
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(Logits)
£(f9 (33), y) « Estimation of the error of the model (using a surrogate loss function)

A R
0 = arg meln ﬁ E ,C(fg (CCZ), yz) » Goal: empirical risk minimization. Expectation of the loss function over the dataset
1=1
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Robust Learning, more formally R}

* [Madry 2018] Goal of robust training: mm max ( 0 ' <’i))
[Madry 2018] g Za}EB(m()s) fo(z'),y
L = typically the cross-entropy Lce(y,79) = Zyk log ()

k=1

» Adversarial training: under-approximate solution of inner-maximization using some attack algorithm

Lodv := L(fo(Tadv),y) with x_, an adversarial perturbation

« Certified training: over-approximate solution using differentiable bounding algorithm (in practice I1BP)

Lisp = L(fo(z)[y]1 — fo(x)) withfH(x) and Jo(x) the output bounds computed with IBP
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Non-robust classification Robust classification
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Interval Bound Propagation

B




Expressive Losses

A

Ladv max  L(fo(z'),y) Ligp
x'€B(x,€) )
£O¢ a . 0 a — 1 b

Different ways of combining have been proposed:
 MTL-IBP

- CC-IBP

* Exp-IBP

@ Expressive Losses for Verified Robustness via Convex Combinations [De Palma 2024]

61 /51



Expressive Losses

LB (fo, Be();y) = (1 — a)Laau(Fo, Be(x); y) + aLisp(fo, Be(x); y),
ngp-IBP(fea Be (CL'), y) = £adv(f97 Be (33), y)(l_a)LIBP(f97 Be(m); y)a.

LIAPE(fo, Be(x);y) := L1BP(fo, Bac(®a); y),
LECIPP (fo, Be(@)iy) = L (= |(1 = @)zp (@aauay) + o U, | y)
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Trade Offs of CT + AT in CO setting
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Sensitivity of CT + AT to o
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Coefficient
(a) Exp-IBP,
CIFAR-10.
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Time trade offs

450 -

400 -

350 A

200 A

Estimated epoch runtime [s]
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ForwAbs MTL-IBP Exp-IBP N-FGSM PGD-5 PGD-10
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Prevent CO in Softplus networks

>

©

2 0.151

|9}

(&}

< —— Exp-IBP

m 0.10- —— MTL-IBP

%] —— ForwAbs

E 0.05 A — FGSM

~

a)

8 0.00— — _l — — — _I — T T T T
5 10 15 20 25 30

Epochs

(a) PGD-7 (solid) and IBP (dashed) acc., CIFAR-10.

1019 4

—— Exp-IBP
10%° —— MTL-IBP
" —— ForwAbs
§ 101! —— FGSM
o
Q@ 107
/- /
103 i
5 10 15 20 25 30
Epochs

(c) IBP loss for CIFAR-10.
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0.14 -
0.12 -
0.10

:(ui 0.08 -

< 0.06 1
0.04 1
0.02
0.00 -

12 16 20 24 6 8 10 12
Epsilon Epsilon

CIFAR-100 CIFAR SVHN

« On CIFAR-100: CO is mitigated, but high cost in empirical robustness (tuning adapted to the epsilon could
help)

« On SVHN: MTL-IBP fails. MTL-IBP tuning is very sensitive compared to Exp-IBP, especially for deep

networks.
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Comparisons with ELLE

0.30 1 —— ELLE-A
- ForwAbs
0.25 = MTL-IBP

Exp-IBP

©
[N}
o

AA Acc. & IBP Accuracy
o
=
w

e I T —
005{ | emmem I
0'00- ::: ——————————————————————————————————————————————————
12 16 20 24
Epsilon
(a) CIFAR-10, AA (solid lines) and IBP accuracies
(dashed).

ELLE-A
ForwAbs
MTL-IBP
Exp-IBP

12 16 20 24
Epsilon

(b) CIFAR-100.
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Comparisons with ELLE

0.7 — ELLE-A 0.45 - —— ELLE-A
- ForwAbs - ForwAbs
0.6 ——— MTL-IBP 0.40 1 — wr=IEE
: —— Exp-IBP —— Exp-IBP
. xP . 0.35 xP
o o
<05 <0.30
[(v] ©
@ o
O 44l O 0.25 1
\ 0.201
0.3-
0.15 1
12 16 20 24 12 16 20 24
Epsilon Epsilon
(a) CIFAR10. (b) CIFAR-100.
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Some clean accuracies

CIFAR-10, CNN-7, 160 epochs

€ Method Clean acc. [%)] IBP loss
Exp-IBP 76.30 £0.43  (4.90 +0.55) x 10*
IBP 39.37 + 1.51 1.92 4+ 0.01
8 FORWABS 74.26 £0.28  (2.05+0.11) x 10*
255 PGD-10 77.074+0.31  (9.79 +0.85) x 10°
PGD-5 79.81+£0.38  (1.7240.11) x 10°
N-FGSM 7728 £0.26  (1.9140.14) x 10°
Exp-IBP 31.30 +2.13 2.15 £0.02
IBP 31.65 & 0.55 2.13
16 FORWABS 46.54 +0.31  (7.72+0.37) x 10}
255 PGD-10 58.444+0.24  (3.5740.33) x 10°
PGD-5 64.07+£0.14  (1.0140.13) x 10°
N-FGSM 62.38 £9.16  (2.93 4+ 2.66) x 10°
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Low Epsilon on standard network?

e-test #EFX’, , | Z|

0.25/255  40/300 747 + 234
0.5/255  82/300 418 + 160
1/255  174/300 210 + 81

=




ReCIPH as traversal order

Dataset Method |Z|-Heuristic |Z|-IBP Bounds |Z|-CROWN Coefs |Z|-Grad
Apv 89+ 55 110+ 72 112+ 74 99+ 69
CC-IBP 178 + 99 305 + 154 326 + 154 302 + 151
CIFAR-10 Standard 12+ 10 37+ 22 20+ 11 25+ 15
FS-CC-IBP 67 + 51 124+ 96 140 = 93 129+ 92
Apv 228 + 147 318 + 218 344 + 228 260 + 200
TinvimaceNet CCBP 416 + 299 671 + 475 782 + 498 723 + 489
yIMageNet  gtandard 21+ 19 68+ 46 23+ 23 39+ 29
FS-CC-IBP 185+ 144 364 + 394 503 + 429 421 + 396
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Qualitative Results

FS+CT+AT CT +AT AT




Robustness and XAl 1

Natural Training Adversarial Training

Image Saliency Map Saliency Ma

Gini: 0.6150 Gini: 0.7084

Saliency maps and their coefficient of two models predicting correctly “Bird”, Figure from (Chalasani et al. 2020)
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Robustness and XAl 2

vanilla pgd IBP

Original image

Gini: 0.31 Gini: 1.00

75151

Gini: 0.38 Gini: 0.54 Gini: 0.99




Robustness and XAl 2
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GradCam method, figure from learnopencv.com

=




Robustness and XAl 3
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