
Over-Approximating Neural Networks for Verification, 
Robustness, and Explainability 

Serge DURAND (CEA). PhD Candidate ED-STIC, Paris-Saclay 

Co-supervisor: Zakaria CHIHANI (DILS/LSL) 

Co-supervisor: Caterina URBAN (ENS/Inria ANTIQUE) 

Director: François TERRIER (DRT/LIST)

PhD Defense, 19/12/2025



/ 512

The need for trustworthy AI

The AI Incident Database https://incidentdatabase.ai/ 

More than 1200 incidents reported!

https://incidentdatabase.ai/


/ 512

The need for trustworthy AI

The AI Incident Database https://incidentdatabase.ai/ 

More than 1200 incidents reported!

https://incidentdatabase.ai/


/ 512

The need for trustworthy AI

The AI Incident Database https://incidentdatabase.ai/ 

More than 1200 incidents reported!

https://incidentdatabase.ai/


/ 512

The need for trustworthy AI

The AI Incident Database https://incidentdatabase.ai/ 

More than 1200 incidents reported!

https://incidentdatabase.ai/


/ 512

The need for trustworthy AI

The AI Incident Database https://incidentdatabase.ai/ 

More than 1200 incidents reported!

https://incidentdatabase.ai/


/ 513

Aspects of Trustworthiness



/ 513

Aspects of Trustworthiness
Verification 

Proving the model has the 
desired behavior

Correct

Error
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Aspects of Trustworthiness
Robust training 

Enforcing the stable prediction 
on similar inputs at training time

<latexit sha1_base64="fDOLwOcAA+yedyTcERK5GoVcJuo=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUSkuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDsbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXty5pXr9UfrqqN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AltOReQ==</latexit>X
fθ′￼
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Aspects of Trustworthiness
Robust training 

Enforcing the stable prediction 
on similar inputs at training time

<latexit sha1_base64="fDOLwOcAA+yedyTcERK5GoVcJuo=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUSkuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDsbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXty5pXr9UfrqqN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AltOReQ==</latexit>X
fθ′￼

Verification 

Proving the model has the 
desired behavior

Correct

Error

Explainability 

Highlight the reason behind the 
decision of the model
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Verifying Neural 
Networks1



/ 51Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks [Katz 2017] 5

Global Safety
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 Property: If the intruder is directly ahead and is moving towards the ownship, the Clear of Conflict command should not be advised

Global Safety
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Verification of Neural Networks

<latexit sha1_base64="fDOLwOcAA+yedyTcERK5GoVcJuo=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUSkuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDsbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXty5pXr9UfrqqN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AltOReQ==</latexit>X fθ( )?fθ

Input-output properties

Correct

Error
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<latexit sha1_base64="fDOLwOcAA+yedyTcERK5GoVcJuo=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUSkuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDsbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXty5pXr9UfrqqN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AltOReQ==</latexit>X fθ

<latexit sha1_base64="hw8+6rNk4CGupl7aUtiDV1PHi0Y=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQNyURqW6EohuXFewDmhAmk0k7dPJw5kYptZ/ixoUibv0Sd/6N0zYLbT1w4XDOvdx7j58KrsCyvo3Cyura+kZxs7S1vbO7Z5b32yrJJGUtmohEdn2imOAxawEHwbqpZCTyBev4w+up33lgUvEkvoNRytyI9GMeckpAS55ZDj0HBgxI1bnPSHCCLz2zYtWsGfAysXNSQTmanvnlBAnNIhYDFUSpnm2l4I6JBE4Fm5ScTLGU0CHps56mMYmYcsez0yf4WCsBDhOpKwY8U39PjEmk1CjydWdEYKAWvan4n9fLILxwxzxOM2AxnS8KM4EhwdMccMAloyBGmhAqub4V0wGRhIJOq6RDsBdfXibt05pdr9VvzyqNqzyOIjpER6iKbHSOGugGNVELUfSIntErejOejBfj3fiYtxaMfOYA/YHx+QMpTJNM</latexit>

fω( ) =

Exact Verification

Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks [Katz 2017]
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<latexit sha1_base64="fDOLwOcAA+yedyTcERK5GoVcJuo=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUSkuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDsbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXty5pXr9UfrqqN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AltOReQ==</latexit>X fθ

<latexit sha1_base64="hw8+6rNk4CGupl7aUtiDV1PHi0Y=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQNyURqW6EohuXFewDmhAmk0k7dPJw5kYptZ/ixoUibv0Sd/6N0zYLbT1w4XDOvdx7j58KrsCyvo3Cyura+kZxs7S1vbO7Z5b32yrJJGUtmohEdn2imOAxawEHwbqpZCTyBev4w+up33lgUvEkvoNRytyI9GMeckpAS55ZDj0HBgxI1bnPSHCCLz2zYtWsGfAysXNSQTmanvnlBAnNIhYDFUSpnm2l4I6JBE4Fm5ScTLGU0CHps56mMYmYcsez0yf4WCsBDhOpKwY8U39PjEmk1CjydWdEYKAWvan4n9fLILxwxzxOM2AxnS8KM4EhwdMccMAloyBGmhAqub4V0wGRhIJOq6RDsBdfXibt05pdr9VvzyqNqzyOIjpER6iKbHSOGugGNVELUfSIntErejOejBfj3fiYtxaMfOYA/YHx+QMpTJNM</latexit>

fω( ) =

Safe :)

Correct

Error

Exact Verification

Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks [Katz 2017]
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<latexit sha1_base64="fDOLwOcAA+yedyTcERK5GoVcJuo=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUSkuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDsbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXty5pXr9UfrqqN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AltOReQ==</latexit>X fθ

<latexit sha1_base64="hw8+6rNk4CGupl7aUtiDV1PHi0Y=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQNyURqW6EohuXFewDmhAmk0k7dPJw5kYptZ/ixoUibv0Sd/6N0zYLbT1w4XDOvdx7j58KrsCyvo3Cyura+kZxs7S1vbO7Z5b32yrJJGUtmohEdn2imOAxawEHwbqpZCTyBev4w+up33lgUvEkvoNRytyI9GMeckpAS55ZDj0HBgxI1bnPSHCCLz2zYtWsGfAysXNSQTmanvnlBAnNIhYDFUSpnm2l4I6JBE4Fm5ScTLGU0CHps56mMYmYcsez0yf4WCsBDhOpKwY8U39PjEmk1CjydWdEYKAWvan4n9fLILxwxzxOM2AxnS8KM4EhwdMccMAloyBGmhAqub4V0wGRhIJOq6RDsBdfXibt05pdr9VvzyqNqzyOIjpER6iKbHSOGugGNVELUfSIntErejOejBfj3fiYtxaMfOYA/YHx+QMpTJNM</latexit>

fω( ) =

Safe :)

Correct

Error

Unsafe :(

Correct

Error

Exact Verification

Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks [Katz 2017]
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<latexit sha1_base64="fDOLwOcAA+yedyTcERK5GoVcJuo=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUSkuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDsbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXty5pXr9UfrqqN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AltOReQ==</latexit>X fθ

<latexit sha1_base64="hw8+6rNk4CGupl7aUtiDV1PHi0Y=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQNyURqW6EohuXFewDmhAmk0k7dPJw5kYptZ/ixoUibv0Sd/6N0zYLbT1w4XDOvdx7j58KrsCyvo3Cyura+kZxs7S1vbO7Z5b32yrJJGUtmohEdn2imOAxawEHwbqpZCTyBev4w+up33lgUvEkvoNRytyI9GMeckpAS55ZDj0HBgxI1bnPSHCCLz2zYtWsGfAysXNSQTmanvnlBAnNIhYDFUSpnm2l4I6JBE4Fm5ScTLGU0CHps56mMYmYcsez0yf4WCsBDhOpKwY8U39PjEmk1CjydWdEYKAWvan4n9fLILxwxzxOM2AxnS8KM4EhwdMccMAloyBGmhAqub4V0wGRhIJOq6RDsBdfXibt05pdr9VvzyqNqzyOIjpER6iKbHSOGugGNVELUfSIntErejOejBfj3fiYtxaMfOYA/YHx+QMpTJNM</latexit>

fω( ) =

Safe :)

Correct

Error

Unsafe :(

Correct

Error

NP-Complete [Katz2017]
Exact Verification

Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks [Katz 2017]
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Linear Approximations



/ 519

Linear Approximations

fθ



/ 519

Linear Approximations

<latexit sha1_base64="BSGl3gaTVJ8lX9mzAaeshM++3q4="></latexit>

→x ↑ X , L(x) ↓ fω(x) ↓ U(x)

fθ
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Linear Approximations

<latexit sha1_base64="BSGl3gaTVJ8lX9mzAaeshM++3q4="></latexit>

→x ↑ X , L(x) ↓ fω(x) ↓ U(x)

<latexit sha1_base64="ywmtRjAjM5yvbzePjWUL6v7zVYI=">AAACU3icdVFLS8NAGNzEV42vqkcvi0VQkJL0UL0IRS8ePChYFZoYvmy2du1mE/dRWkL/owge/CNePGhSe/A5sDDMfLOP2SjjTGnXfbHsmdm5+YXKorO0vLK6Vl3fuFKpkYS2ScpTeROBopwJ2tZMc3qTSQpJxOl11D8p/esBlYql4lKPMhokcCdYlxHQhRRW7/2Oc7Y73MNH2FcmCXN25I1vBfaNiKksd8194FkPQjb29/EwZI7/8GAgdtp/pdLBf6HACas1t+5OgH8Tb0pqaIrzsPrkxykxCRWacFCq47mZDnKQmhFOx45vFM2A9OGOdgoqIKEqyCedjPFOocS4m8piCY0n6tdEDolSoyQqJhPQPfXTK8W/vI7R3cMgZyIzmgryeVDXcKxTXBaMYyYp0XxUECCSFXfFpAcSiC6+oSzB+/nk3+SqUfea9eZFo9Y6ntZRQVtoG+0iDx2gFjpF56iNCHpEr+jdQtaz9Wbb9uznqG1NM5voG+yVD+Qrsa8=</latexit>

L(x) =
n∑

i=1

ωi xi U(x) =
n∑

i=1

ωi xi

fθ
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Over-approximations for verification

<latexit sha1_base64="fDOLwOcAA+yedyTcERK5GoVcJuo=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUSkuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDsbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXty5pXr9UfrqqN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AltOReQ==</latexit>X fθ

fθ( ) ⊂
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Over-approximations for verification
Correct

Error

Safe!

<latexit sha1_base64="fDOLwOcAA+yedyTcERK5GoVcJuo=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUSkuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDsbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXty5pXr9UfrqqN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AltOReQ==</latexit>X fθ

fθ( ) ⊂
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Over-approximations for verification

Unknown

Correct

Error

Correct

Error

Safe!

<latexit sha1_base64="fDOLwOcAA+yedyTcERK5GoVcJuo=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUSkuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDsbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXty5pXr9UfrqqN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AltOReQ==</latexit>X fθ

fθ( ) ⊂
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Input partitioning

Formal Security Analysis of Neural Networks using Symbolic Intervals [Wang 2018]
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Error

Formal Security Analysis of Neural Networks using Symbolic Intervals [Wang 2018]
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Input partitioning

False Alarm ?

Correct

Error
<latexit sha1_base64="fDOLwOcAA+yedyTcERK5GoVcJuo=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUSkuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDsbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXty5pXr9UfrqqN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AltOReQ==</latexit>X <latexit sha1_base64="T00oUbRRMLsMR29nfc4T9yrO6gI=">AAACF3icbVDLSsNAFL3xWesr6tLNYBFchaRIdSMU3bisYB/QhDCZTtuhkwczE6GE/oUbf8WNC0Xc6s6/cdJm0YcHBs6ccy/33hMknEll27/G2vrG5tZ2aae8u7d/cGgeHbdknApCmyTmsegEWFLOItpUTHHaSQTFYcBpOxjd5X77iQrJ4uhRjRPqhXgQsT4jWGnJNy03xGpIMM86E3SD5n6+g1ySJgtS1TcrtmVPgVaJU5AKFGj45o/bi0ka0kgRjqXsOnaivAwLxQink7KbSppgMsID2tU0wiGVXja9a4LOtdJD/VjoFyk0Vec7MhxKOQ4DXZkvKZe9XPzP66aqf+1lLEpSRSMyG9RPOVIxykNCPSYoUXysCSaC6V0RGWKBidJRlnUIzvLJq6RVtZyaVXu4rNRvizhKcApncAEOXEEd7qEBTSDwDK/wDh/Gi/FmfBpfs9I1o+g5gQUY33+Yz5+W</latexit>X = X1 → X2

1) Partition the input 
space

Formal Security Analysis of Neural Networks using Symbolic Intervals [Wang 2018]
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Input partitioning

False Alarm ?

Correct

Error
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Formal Security Analysis of Neural Networks using Symbolic Intervals [Wang 2018]

2 ) Solve two verification problems
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Error
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Iterative input partitioning 
X1: [-1,1] 
X2: [-1,1]

X2: [-1,0] X2: [0,1]

X1: [0,1]X1: [-1,0]

X2: [0;0.5] X2: [0.5,1]
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“Real life” example 

• Industrial Use Case  

• 3133 subproblems to solve!
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Existing heuristics:

• Random  

• Largest interval  

• Gradient Smear [ReluVal, Wang 2018]

Formal Security Analysis of Neural Networks using Symbolic Intervals [Wang 2018]
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backward pass to bound input gradients given pre-
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Over-approximation of the outputs 

(symbolic intervals for ReluVal)
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Final score: largest upper bound times input width
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Existing heuristics:

• Random  

• Largest interval  

• Gradient Smear [ReluVal, Wang 2018]

backward pass to bound input gradients given pre-

computed output bounds.

Over-approximation of the outputs 

(symbolic intervals for ReluVal)

×

Final score: largest upper bound times input width

Our proposal: reuse information 
already computed during the 
over-approximation

Formal Security Analysis of Neural Networks using Symbolic Intervals [Wang 2018]
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ReCIPH: (Relational coefficient for input partitioning 
heuristic)

<latexit sha1_base64="BSGl3gaTVJ8lX9mzAaeshM++3q4="></latexit>

→x ↑ X , L(x) ↓ fω(x) ↓ U(x)

<latexit sha1_base64="ywmtRjAjM5yvbzePjWUL6v7zVYI="></latexit>

L(x) =
n∑

i=1

ωi xi U(x) =
n∑

i=1

ωi xi
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ReCIPH: (Relational coefficient for input partitioning 
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• ReCIPH score for the input xi =
|αi | + |αi |

2
⋅ (ui − li)
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ReCIPH: (Relational coefficient for input partitioning 
heuristic)

• ReCIPH score for the input xi =
|αi | + |αi |

2
⋅ (ui − li)

• Variable to split first: highest ReCIPH score 

<latexit sha1_base64="BSGl3gaTVJ8lX9mzAaeshM++3q4="></latexit>

→x ↑ X , L(x) ↓ fω(x) ↓ U(x)

<latexit sha1_base64="ywmtRjAjM5yvbzePjWUL6v7zVYI="></latexit>

L(x) =
n∑

i=1

ωi xi U(x) =
n∑

i=1

ωi xi
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Impact on our use case

879 subproblems

3113 subproblems
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ACAS Xu benchmark

Properties Width ReCIPH Gradient Smear

1 68 567 15 289 16 521

3 319 306 16 140 209 924

4 25 906 1 828 2 206

5 142 637 7 023 29 169

9 3 055 2 395 3 877

10 1 331 335 217

Reported metric: number of subproblems 



/ 5118

Wider applicability

• LIBRA (Fairness analysis)

LIBRA https://caterinaurban.github.io/project/libra/ 

https://caterinaurban.github.io/project/libra/
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Networks Competition (VNN-COMP 2024): Summary and Results [Brix 2024]

• PyRAT : 6/12 benchmarks in VNN-COMP 

2024 where PyRAT finished 2 / 8 tools
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Wider applicability

• LIBRA (Fairness analysis)

VNN Comp 2024 report, Verifying Neural Networks with PyRAT [Lemesle 2025], The Fifth International Verification of Neural 
Networks Competition (VNN-COMP 2024): Summary and Results [Brix 2024]

• Verification remains a hard challenge!

• PyRAT : 6/12 benchmarks in VNN-COMP 

2024 where PyRAT finished 2 / 8 tools
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Over-Approximations for 
Empirical Robustness2
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/ 51Explaining and Harnessing Adversarial Examples [Goodfellow 2015] 20

Pandas (57.7% confidence) Gibbon (99.3% confidence)

Local Robustness
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Neural Network Supervised Training

fθ(x)

x
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Neural Network Supervised Training

fθ(x)

x

Error of the prediction 
(estimated with a loss function)
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Neural Network Supervised Training

fθ′￼(x)

x Updated parameters θ′￼

After minimizing the error
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Robust Training

<latexit sha1_base64="fDOLwOcAA+yedyTcERK5GoVcJuo=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUSkuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDsbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXty5pXr9UfrqqN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AltOReQ==</latexit>X

On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models [Gowal 2018]

Worst case of the over-approximation of 
the reachable space

Certified Training (CT)

fθ( )
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Robust Training

On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models [Gowal 2018]

Certified Training (CT)

<latexit sha1_base64="fDOLwOcAA+yedyTcERK5GoVcJuo=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUSkuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDsbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXty5pXr9UfrqqN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AltOReQ==</latexit>X

fθ′￼( )

Minimizing the worst-
case of the 
approximation: leads to 
tighter approximation 

Updated parameters θ′￼
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Robust Training

On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models [Gowal 2018]

Adversarial Training (AT)

fθ(xadv)

<latexit sha1_base64="z6Dyk8efkuUtM6fcZGRb2Qoyi+I="></latexit>

xadv → X

Output computed on an adversarial 
perturbation 
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Robust Training

On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models [Gowal 2018]

Adversarial Training (AT)

fθ′￼(xadv)

<latexit sha1_base64="z6Dyk8efkuUtM6fcZGRb2Qoyi+I="></latexit>

xadv → X

Minimizing the error on 
adversarial perturbations: 
leads to better empirical 
robustness 

Updated parameters θ′￼
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Combining Certified and Adversarial Training

α = 0 α = 1

Expressive Losses for Verified Robustness via Convex Combinations [De Palma 2024] 

AT CT

α ∈ [0,1]

(CT + AT)
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Training Method Standard (%) Empirical (%) Verified (%)

Standard 91.27 0 0

Trade-offs

CTBench: A Library and Benchmark for Certified Training [Mao 2024]

CIFAR-10, CNN-7,  = 8 / 255. ϵ
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Training Method Standard (%) Empirical (%) Verified (%)

Standard 91.27 0 0

AT 77.07 40.14 0

Trade-offs

CTBench: A Library and Benchmark for Certified Training [Mao 2024]

CIFAR-10, CNN-7,  = 8 / 255. ϵ
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Training Method Standard (%) Empirical (%) Verified (%)

Standard 91.27 0 0

AT 77.07 40.14 0

CT 48.51 35.48 34.97

Trade-offs

CTBench: A Library and Benchmark for Certified Training [Mao 2024]

CIFAR-10, CNN-7,  = 8 / 255. ϵ
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Training Method Standard (%) Empirical (%) Verified (%)

Standard 91.27 0 0

AT 77.07 40.14 0

CT 48.51 35.48 34.97

CT + AT 53.35 36.02 35.44

Trade-offs

CTBench: A Library and Benchmark for Certified Training [Mao 2024]

CIFAR-10, CNN-7,  = 8 / 255. ϵ
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Cost of adversarial training: 

<latexit sha1_base64="I7gFwHKGhh1HKH+UEcueN9GJooI="></latexit>

2ωx

xPGD
rand

xPGD

Towards Deep Learning Models Resistant to Adversarial Attacks [Madry 2018] 

PGD
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Single Step Training?

Explaining and Harnessing Adversarial Examples [Goodfellow 2015] 

FGSM

<latexit sha1_base64="ZrYGAdk+4jKdjUplwsN0LpgUhgc="></latexit>

2ωx

xFGSM
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Catastrophic Overfitting

Fast is better than free: revisiting adversarial training [Wong 2020]

<latexit sha1_base64="ZrYGAdk+4jKdjUplwsN0LpgUhgc="></latexit>

2ωx

xFGSM

FGSM

Robust Accuracy against multi-step attacks
Robust Accuracy against single-step attacks

CIFAR10, PreactResnet18, ϵ = 8/255
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Mitigations
• Noisy single steps attacks

Fast is better than free: revisiting adversarial training [Wong 2020], Make Some Noise: Reliable and Efficient Single-Step 
Adversarial Training [De Jorge 2022]

RS-FGSM

<latexit sha1_base64="sQryNBWIkCfElNIrHSO/T0MoN2w="></latexit>

xRS-FGSM
rand

xRS
rand + ω

xRS-FGSM
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Mitigations
• Noisy single steps attacks

Fast is better than free: revisiting adversarial training [Wong 2020], Make Some Noise: Reliable and Efficient Single-Step 
Adversarial Training [De Jorge 2022]

RS-FGSM

<latexit sha1_base64="sQryNBWIkCfElNIrHSO/T0MoN2w="></latexit>

xRS-FGSM
rand

xRS
rand + ω

xRS-FGSM

<latexit sha1_base64="EwLTpz+A923ZN4XHZUow6OTiFJw="></latexit>

2kω

xN-FGSM
rand

xN-FGSM

N-FGSM
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Over-approximations and catastrophic overfitting

CIFAR10, PreactResnet18. Mean and 95% CI over 5 runs
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• Bounds decrease with stronger attacks 
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Over-approximations and catastrophic overfitting

• Bounds decrease with stronger attacks 
• Adding noise is not enough to consistently 

mitigate catastrophic overfitting?

CIFAR10, PreactResnet18. Mean and 95% CI over 5 runs
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Over-approximations and catastrophic overfitting

α = 0 α = 1

High verifiability!

Our proposal: use over-approximations at training time for empirical robustness
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Over-approximations and catastrophic overfitting

α = 0 α = 1

High verifiability!?

Our proposal: use over-approximations at training time for empirical robustness
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CT for Empirical Robustness
CIFAR10, PreactResnet18, ϵ = 8/255

• CT + FGSM can prevent catastrophic overfitting on 
FGSM 

CIFAR10, PreactResnet18

• Also prevent CO and improves robustness for N-FGSM

CT

CT
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CT for Empirical Robustness

CIFAR10, CNN-7, 30 Epochs

Performance improvement (w.r.t underlying attack): 

• On longer training schedules 

• On easier datasets 

• On shallower networks

CT
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Training Method Empirical (%)

CT + N-FGSM 14.79

CT + PGD-5 16.45

PGD-10 15.14

PGD-5 11.47

N-FGSM 0.23
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CT for Empirical Robustness

Training Method Empirical (%)

CT + N-FGSM 14.79

CT + PGD-5 16.45

PGD-10 15.14

PGD-5 11.47

N-FGSM 0.23

CIFAR10, CNN-7, 30 Epochs CIFAR10, CNN-7, 160 Epochs 

Performance improvement (w.r.t underlying attack): 

• On longer training schedules 

• On easier datasets 

• On shallower networks

CT

Can over-approximations be used beyond robustness? 
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Over-approximations 
for Explainability3
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Feature Attributions
Right for the wrong reasons, the need for Explainability

• Identify inputs contributing to the network’s 

decision: improve trust, help diagnose bad 

models …
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Feature Attributions
Right for the wrong reasons, the need for Explainability

• Identify inputs contributing to the network’s 

decision: improve trust, help diagnose bad 

models …

• But what if the method does not highlight truly 

important inputs?

CAM-Based Methods Can See through Walls [Taimeskhanov 2024]
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Formally Robust Explanations

Abduction-Based Explanations for Machine Learning Models [Ignatiev 2018]

• Binary attribution: irrelevant or relevant

• Irrelevant pixel: perturbing it (locally) does not change 

the prediction (= provable robustness!)

• Subset-Optimal: if perturbing any new pixel together 

with the irrelevant features changes the prediction

• Key metric: size of the irrelevant feature set (larger = 

simpler explanation)
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Formally Robust Explanations

VeriX: Towards Verified Explainability of Deep Neural Networks [Wu 2023] 
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x1

x2

x3

x4

x5

x6

• Each step: solving a verification problem!

• Active area of research to increase scalability

VeriX: Towards Verified Explainability of Deep Neural Networks [Wu 2023] 

Candidate

Irrelevant

Relevant
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Over-approximations For Explainability

VeriX: Towards Verified Explainability of Deep Neural Networks [Wu 2023], A dive into formal explainable attributions for image 
classification [Doncenco 2025]

• Use over-approximations for scalability?

Too Many Unknowns!

Irrelevant

Relevant

Unknown
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Over-approximations For Explainability

Everything Irrelevant! 
Explanation is empty

Unknowns might hide 
 this possibility!

• Use over-approximations for scalability? 

• Use robust models?
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Training For Explainability

• Make sure the entire input is Empirically Formally Explainable (EFX) 

1. there exist a successful perturbation (empirically estimated) 

2. there is at least one irrelevant feature (provably assessed with over-approximations) 

• Use robust training with lowered robustness goal to prevent full irrelevancy

Our propositions:
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Lowering the robustness goal

Saliency map Mask top k %

⊙+

⊙

α

(1 − α)

+

• Adversarial training: lower the perturbation radius 

• Expressive Losses: lower the coefficient associated with the IBP loss 

• Train to be robust on a subset of inputs (Feature Subset Certified Training)
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Results
Perturbation Training Method  Accuracy (%) ↑ Avg Irrelevant set ↑ 

(# features: 4096)
# EFX(AA) ↑ 

(samples: 1000)

4 / 255

Standard

Adversarial (1 / 255)

CT + Adv (0.5 / 255)

FS CT + Adv (2 / 255)

8 / 255

Standard

Adversarial (4 / 255)

CT + Adv (1 / 255)

FS CT + Adv (4 / 255)

TinyImageNet, CNN-7
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Results
Perturbation Training Method  Accuracy (%) ↑ Avg Irrelevant set ↑ 

(# features: 4096)
# EFX(AA) ↑ 

(samples: 1000)

4 / 255

Standard 54.80 23 990

Adversarial (1 / 255) 52.61 340 911

CT + AT (0.5 / 255) 44.79 804 947

FS CT + AT (2 / 255) 48.60 506 996

8 / 255

Standard 54.80 6 887

Adversarial (4 / 255) 41.41 263 925

CT + AT (1 / 255) 42.36 465 988

FS CT + AT (4 / 255) 44.49 684 998

TinyImageNet, CNN-7

• Non-trivial irrelevant features set on TinyImageNet! 

• Feature Subset training offers better trade offs for large epsilon
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Conclusion3
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Contributions

49

1. ReCIPH: a heuristic to improve verification relying on partitioning and over-
approximations (Workshop Poster WFVML 2022)

2. Using Certified Training for Empirical Robustness (Journal TMLR 2025)

3. Using Certified Training to scale Formal Explainability (submission in 
preparation)
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Robustness Verification for Transformers [Shi 2020]
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Robust trainingVerification

• Automated input partitioning 
(beyond bissection)

• Verification of more complex 

architectures

• Verification of more complex 

properties

Explainability

• Ever-going problem of efficiency • Ever-going problem of efficiency • Ever-going problem of efficiency

Verifying Global Neural Network Specifications using Hyperproperties [Boetius 2023] 
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• Re-visit tighter 
approximation for 
training?

Verification

• Automated input partitioning 
(beyond bissection)

• Verification of more complex 

architectures

• Verification of more complex 

properties

Explainability

• Ever-going problem of efficiency • Ever-going problem of efficiency • Ever-going problem of efficiency

On the Paradox of Certified Training [Jovanović 2021], Gaussian Loss Smoothing Enables Certified Training with Tight Convex 
Relaxations [Balauca 2024] 
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Logits

51

• Over-approximations: versatile tool that can be leveraged in multiple ways to bring trust to AI systems

• Trust should be an integral part of the design / training choices!

If you must only remember one thing

Questions ?
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LIBRA (Fairness)

Coverage (%) Execution Time (s)

L U Width ReCIPH Width ReCIPH

1 2 68.8% 87.5 % 0.26 0.11

6 68.8% 87.5 % 0.51 0.20

4 2 100 % 100 % 2.60 2.10

6 100 % 100 % 2.65 2.10

LIBRA https://caterinaurban.github.io/project/libra/ 

https://caterinaurban.github.io/project/libra/
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VNN Comp 2024

Benchmark PyRAT Rank Notes

cGAN 1 / 6 First rank position are 
shared with at least one 
other tool.  
Global ranking was 2 out 
of 8 submitted tools

LinearizeNN 1 / 4

Collins RUL CNN 5 / 7

TLL Verify Bench 1 / 8

ACAS Xu 3 / 8

Dist Shift 1 / 5

PyRAT with ReCIPH input partitioning is used for 6 out of 12 benchmarks

VNN Comp 2024 report https://arxiv.org/abs/2412.19985

https://arxiv.org/abs/2412.19985
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VNN Comp 2024

Benchmark PyRAT Rank Notes

cGAN 1 / 6 First rank position are 
shared with at least one 
other tool.  
Global ranking was 2 out 
of 8 submitted tools

LinearizeNN 1 / 4

Collins RUL CNN 5 / 7

TLL Verify Bench 1 / 8

ACAS Xu 3 / 8

Dist Shift 1 / 5

PyRAT with ReCIPH input partitioning is used for 6 out of 12 benchmarks

VNN Comp 2024 report https://arxiv.org/abs/2412.19985

Verification is still a hard challenge!

https://arxiv.org/abs/2412.19985
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Local Linearity and Catastrophic Overfitting
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Source of approximations: handling of the non-linearities (activation functions)

<latexit sha1_base64="E0c1lW7p3CfVvmTHINvKDRJonAI="></latexit>

→1 2

x

y

(a) Exact ReLU

y = u

→1 2

x

y

(b) Box approximation

y =
ω
→ x+

µ
→

y =
ω
→ x

→1 2

x

y

(c) Parallel Linear Approximation

y
=
x

→1 2

y =
ωx+

µ

x

y

(d) DeepPoly/CROWN (case u → ↑l)
y
=
x

→1 2

y =
ωx

+
µ

x

y

(e) DeepPoly/CROWN (case u > ↑l)

→1 2
y =

ω x
+
b

y
=
ω x

+
b

x

y

(f) Parallel relaxation of tanh

Parallel: WK [Wong2017], FastLin [Weng2018], Neurify [Wang2018], DeepZ [Singh2019], CROWN [Zhang 2018], DeepPoly [Singh 2019] 
(Non-exhaustive list)
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<latexit sha1_base64="ITQOpB878cRZJfRvKjtzxH1mD2Y="></latexit>

ω→ → ω ↑ ε↓ω L(fω(x), y) • Gradient Descent: Update of the parameters in the opposite direction of the 

gradient to minimize the error. 

Stochastic Gradient Descent (SGD): compute the gradients and do the update over 

small batch of inputs randomly drawn from the dataset.  

One epoch = one full pass over the dataset

• Goal: empirical risk minimization. Expectation of the loss function over the dataset

<latexit sha1_base64="x4b7MNS8bALGJM6dSsUkAZf1kz4="></latexit>

ω̂ = argmin
ω

1

n

n∑

i=1

L
(
fω(xi), yi

)
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Conv ReLU Conv FC

57

Supervised Training (Classification)
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(Logits)
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x
• Estimation of the error of the model (using a surrogate loss function)  

<latexit sha1_base64="s5P7KJECa/4elnl1c3WoLA3T8eY=">AAADu3icdVJLbxMxEHYbHmV5pXCEg0VUKZVWIaEocIlUwYUDhy </latexit>

L(fω(x), y)
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Robust Learning, more formally

• [Madry 2018] Goal of robust training:

<latexit sha1_base64="C+jXy2z52OsTr59tEdHVzH6zc1I="></latexit>

min
ω

n∑

i=1

max
x→→B(x(i),ε)

L
(
fω(x

↑), y(i)
)

<latexit sha1_base64="NT+wG/JfkwIzAbZ1WgRo80UORrg="></latexit>

L = typically the cross-entropy

• Adversarial training: under-approximate solution of inner-maximization using some attack algorithm 

• Certified training: over-approximate solution using differentiable bounding algorithm (in practice IBP)
<latexit sha1_base64="55Kh3eKNAw2iXtCYhtltlzTUChA="></latexit>

LIBP := L(fω(x)[y]1→ fω(x)) with  and   the output bounds computed with IBP fθ(x) fθ(x)

<latexit sha1_base64="hgolB2cD553Fl5hH48WA8agrjeQ=">AAACHnicbVDJSgNBEO2JW4xb1KOXxiAkIGFG3BCEoBcPHiIYDSRhqOn0JE16FrprxDDkS7z4K148KCJ40r+xsxzi8qDg8V4VVfW8WAqNtv1lZWZm5+YXsou5peWV1bX8+saNjhLFeI1FMlJ1DzSXIuQ1FCh5PVYcAk/yW693PvRv77jSIgqvsR/zVgCdUPiCARrJzR80A8AuA5leDtwU2ncDenJKp8Si7zaxyxGK92O/tNsvufmCXbZHoH+JMyEFMkHVzX802xFLAh4ik6B1w7FjbKWgUDDJB7lmonkMrAcd3jA0hIDrVjp6b0B3jNKmfqRMhUhH6vRECoHW/cAzncO79W9vKP7nNRL0j1upCOMEecjGi/xEUozoMCvaFoozlH1DgClhbqWsCwoYmkRzJgTn98t/yc1e2TksH17tFypnkziyZItskyJxyBGpkAtSJTXCyAN5Ii/k1Xq0nq03633cmrEmM5vkB6zPbz97oo0=</latexit>

Ladv := L(fω(xadv), y) with  an adversarial perturbationxadv

<latexit sha1_base64="kOKRdzrjzJ04DWGQ+hi80tSUeIo=">AAACNXicbVBPS8MwHE39O+e/qUcvwSFM0NGKTC+D4RAEPSg4J6yzpFm2hSZtSVKhhH4pL34PT3rwoIhXv4LZ7EGnDwIv7/1+JO/5MaNS2fazNTU9Mzs3X1goLi4tr6yW1tavZZQITFo4YpG48ZEkjIakpahi5CYWBHGfkbYfNEd++44ISaPwSqUx6XI0CGmfYqSM5JXOXY7UECOmzzNPjy+C6+ZJllXSXegOkdJptgPrcA+6MuGeDupOdqvPMph6AXRZNKjkQ16w45XKdtUeA/4lTk7KIMeFV3p0exFOOAkVZkjKjmPHqquRUBQzkhXdRJIY4QANSMfQEHEiu3qcOoPbRunBfiTMCRUcqz83NOJSptw3k6NYctIbif95nUT1j7qahnGiSIi/H+onDKoIjiqEPSoIViw1BGFBzV8hHiKBsDJFF00JzmTkv+R6v+rUqrXLg3LjOK+jADbBFqgABxyCBjgFF6AFMLgHT+AVvFkP1ov1bn18j05Z+c4G+AXr8wsPnKuW</latexit>

LCE(y, ŷ) = →
K∑

k=1

yk log(ŷk)
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Interval Bound Propagation
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Expressive Losses

<latexit sha1_base64="bP6JUbY0DjnsJWrjmc4Q++KpPT8="></latexit>

Lω

<latexit sha1_base64="NnJuFjJTvrp8GiLnbCInZ5aIbMw="></latexit>

Ladv

α = 0 α = 1

<latexit sha1_base64="peLDwIPpwR0Mzz7N0enp6HQLSmk=">AAACCnicbVDLSsNAFL2pr1pfqS7dDJaCq5KIVJelbhRcVOgL2hAm00k7dPJgZqKUkD/wF9zq3p249Sfc+iVO2yy0emDgcM69dw7HizmTyrI+jcLa+sbmVnG7tLO7t39glg+7MkoEoR0S8Uj0PSwpZyHtKKY47ceC4sDjtOdNr+Z+754KyaKwrWYxdQI8DpnPCFZacs3yMMBqQjBPbzM3vWm2MtesWDVrAfSX2DmpQI6Wa34NRxFJAhoqwrGUA9uKlZNioRjhNCsNE0ljTKZ4TAeahjig0kkX0TNU1coI+ZHQL1Roof7cSHEg5Szw9OQ8qFz15uJ/3iBR/qWTsjBOFA3J8iM/4UhFaN4DGjFBieIzTTARTGdFZIIFJkq3VaqiNtYVovya1KXYqxX8Jd2zml2v1e/OK41mXk8RjuEETsGGC2jANbSgAwQe4Ame4cV4NF6NN+N9OVow8p0j+AXj4xt605n4</latexit>

LIBP
<latexit sha1_base64="Nik5eYgzqKTWf4NuKH2wAd1ry4Q="></latexit>

max
x→→B(x,ω)

L(fε(x↑), y)

Expressive Losses for Verified Robustness via Convex Combinations [De Palma 2024] 

Different ways of combining have been proposed: 

• MTL-IBP 

• CC-IBP 

• Exp-IBP
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Expressive Losses
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Trade Offs of CT + AT in CO setting
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Sensitivity of CT + AT to α
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Time trade offs
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Prevent CO in Softplus networks
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Limits

CIFAR-100 CIFAR SVHN

•  On CIFAR-100: CO is mitigated, but high cost in empirical robustness (tuning adapted to the epsilon could 

help) 

• On SVHN: MTL-IBP fails. MTL-IBP tuning is very sensitive compared to Exp-IBP, especially for deep 

networks.
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Comparisons with ELLE
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Some clean accuracies

CIFAR-10, CNN-7, 160 epochs
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Low Epsilon on standard network?
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ReCIPH as traversal order
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Qualitative Results

FS+CT+AT CT + AT AT
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Robustness and XAI 1
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Robustness and XAI 2
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Robustness and XAI 2
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Robustness and XAI 3


